Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Phytotoxic evaluation of Phragmites australis: an investigation of aqueous extracts of different organs

Md N. Uddin A B , Domenico Caridi A and Randall W. Robinson A
+ Author Affiliations
- Author Affiliations

A School of Engineering & Science, Victoria University, St Albans Campus, Melbourne, Vic. 8001, Australia.

B Corresponding author. Email: mdnazim.uddin@live.vu.edu.au

Marine and Freshwater Research 63(9) 777-787 https://doi.org/10.1071/MF12071
Submitted: 9 March 2012  Accepted: 24 July 2012   Published: 8 October 2012

Abstract

Phragmites australis is one of the most widespread and invasive plants on earth. Allelopathic interference has been considered as a possible way associated with its invasiveness in wetlands. A series of ecologically realistic experiments was conducted to explore allelochemical phytotoxicity of Phragmites. Germination bioassays using aqueous extracts of different organs (leaf, stem, root and rhizome) of Phragmites were tested with model seeds (Lactuca sativa and Raphanus sativus) and associated plant species (Juncus pallidus and Rumex conglomeratus). These studies showed that leaf and rhizome extracts exhibited strong inhibition on germination, biometric and physiological parameters (all P ≤ 0.001). Dose–response studies confirmed LC50 (4.68% and 11.25%) of Lactuca for leaf and rhizome extracts respectively. Root growth of Juncus and Rumex was inhibited by 75% and 30%, respectively, in leaf leachate-incorporated soil. Chlorophyll content and maximum quantum yield (Fv/Fm) were significantly reduced with leaf and rhizome leachates. The stability and quantity of water-soluble phenolics in anaerobic versus aerobic condition may influence phytotoxic effects to other species. Phragmites organs can be ranked in order of allelopathic potentiality as follows: leaf > rhizome > root > stem. The present study highlighted the potential impacts of allelochemicals on plant recruitment in wetlands invaded by Phragmites.

Additional keywords : Australia, cell integrity, ecosystems, litter decomposition, radicle length, soil systems.


References

Allaie, R. R., Reshi, Z., Rashid, I., and Wafai, B. A. (2006). Effect of aqueous leaf leachate of Anthemis cotula – an alien invasive species on germination behaviour of some field crops. Journal Agronomy & Crop Science 192, 186–191.
Effect of aqueous leaf leachate of Anthemis cotula – an alien invasive species on germination behaviour of some field crops.Crossref | GoogleScholarGoogle Scholar |

An, M., Pratley, J. E., and Haig, T. (1997). Phytotoxicity of Vulpia residues: I. Investigation of aqueous extracts. Journal of Chemical Ecology 23, 1979–1995.
Phytotoxicity of Vulpia residues: I. Investigation of aqueous extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsleiu7Y%3D&md5=0182de991ade712b2c29b318cbba59a0CAS |

Armstrong, J., and Armstrong, W. (1999). Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytologist 142, 201–217.
Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOmsrw%3D&md5=c651aa35e04b7cb02ce350b67b5a949bCAS |

Armstrong, J., and Armstrong, W. (2001). An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Botany 69, 251–268.
An overview of the effects of phytotoxins on Phragmites australis in relation to die-back.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisF2mtLc%3D&md5=b92c07df56504df6bba6e166b57ec0b2CAS |

Armstrong, J., Armstrong, W., and Putten, W. H. d. (1996). Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist 133, 399–414.
Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsV2rs7k%3D&md5=b3ea824b566a2c309af5f291f4646db9CAS |

Bains, G., Sampath Kumar, A., Rudrappa, T., Alff, E., Hanson, T. E., and Bais, H. P. (2009). Native plant and microbial contributions to a negative plant–plant interaction. Plant Physiology 151, 2145–2151.
Native plant and microbial contributions to a negative plant–plant interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgtrjL&md5=b1e8cd36fbf5d81e446ceed1426ffbacCAS |

Batish, D. R., Singh, H. P., Kohli, R. K., Saxena, D. B., and Kaur, S. (2002). Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa. Environmental and Experimental Botany 47, 149–155.
Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFyltrc%3D&md5=5f43aff47090a053641ef1c669f9df75CAS |

Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K., and Gawronski, S. (2006). Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum 50, 156–158.
Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth.Crossref | GoogleScholarGoogle Scholar |

Brix, H. (1999). The European research project on reed die-back and progression (EUREED). Limnologica – Ecology and Management of Inland Waters 29, 5–10.
The European research project on reed die-back and progression (EUREED).Crossref | GoogleScholarGoogle Scholar |

Burgos, N. R., and Talbert, R. E. (2000). Differential activity of allelochemicals from secale cereale in seedling bioassays. Weed Science 48, 302–310.
Differential activity of allelochemicals from secale cereale in seedling bioassays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2gtr0%3D&md5=bc1a43d1b77beebaad6946c0f58296fdCAS |

Callaway, R. M. (2002). The detection of neighbors by plants. Trends in Ecology & Evolution 17, 104–105.
The detection of neighbors by plants.Crossref | GoogleScholarGoogle Scholar |

Callaway, R. M., and Walker, L. R. (1997). Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78, 1958–1965.
Competition and facilitation: a synthetic approach to interactions in plant communities.Crossref | GoogleScholarGoogle Scholar |

Chou, C.-H., and Patrick, Z. A. (1976). Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. Journal of Chemical Ecology 2, 369–387.
Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsFCrt74%3D&md5=2c453819d7bef62327afd689a6c9d7e9CAS |

Čížková, H., Brix, H., Kopecký, J., and Lukavská, J. (1999). Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquatic Botany 64, 303–315.
Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations.Crossref | GoogleScholarGoogle Scholar |

Coops, H., and Van Der Velde, G. (1995). Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshwater Biology 34, 13–20.
Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation.Crossref | GoogleScholarGoogle Scholar |

Ehrenfeld, J. G., Kourtev, P., and Huang, W. (2001). Changes in soil functions following invasions of exotic understory plants in decidious forests. Ecological Applications 11, 1287–1300.
Changes in soil functions following invasions of exotic understory plants in decidious forests.Crossref | GoogleScholarGoogle Scholar |

Engloner, A. I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) – A review. Flora 204, 331–346.
Structure, growth dynamics and biomass of reed (Phragmites australis) – A review.Crossref | GoogleScholarGoogle Scholar |

Gallardo-Williams, M.T., Barton, R.L., Dooris, P.M., and Martin, D.F. (2002). Inhibition of onion germination and root growth by cattail extracts involves reduced cell proliferation and disruption of cell wall integrity. Journal of Aquatic Plant Management 40, 105–109.

Gopal, B., and Goel, U. (1993). Competition and allelopathy in aquatic plant communities. Botanical Review 59, 155–210.
Competition and allelopathy in aquatic plant communities.Crossref | GoogleScholarGoogle Scholar |

Gross, E. M., Meyer, H., and Schilling, G. (1996). Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41, 133–138.
Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVWqsA%3D%3D&md5=dd66fa1efae5b2e4572992e56f537bf1CAS |

Hegazy, A. K., Am, W. M., and Khedr, A. A. (2001). Allelopathic effect of Nymphaea lotus L. on growth and yield of cultivated rice around Lake Manzala (Nile Delta). Hydrobiologia 464, 133–142.
Allelopathic effect of Nymphaea lotus L. on growth and yield of cultivated rice around Lake Manzala (Nile Delta).Crossref | GoogleScholarGoogle Scholar |

Hocking, P. J. (1989). Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Stuedel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Marine and Freshwater Research 40, 421–444.
Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites australis (Cav.) Trin. ex Stuedel in a nutrient-enriched swamp in inland Australia. I. Whole plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt12htL4%3D&md5=672c932f9c295b126b40c0c171169106CAS |

Hu, H., and Hong, Y. (2008). Algal-bloom control by allelopathy of aquatic macrophytes – A review. Frontiers of Environmental Science & Engineering in China 2, 421–438.
Algal-bloom control by allelopathy of aquatic macrophytes – A review.Crossref | GoogleScholarGoogle Scholar |

Hussain, M. I., and Reigosa, M. J. (2011). Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany 62, 4533–4545.
Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKisbvO&md5=212589a1f3d74433a217d63d00d91898CAS |

Inderjit, (1996). Plant phenolics in allelopathy. The Botanical Review 62, 186–202.
Plant phenolics in allelopathy.Crossref | GoogleScholarGoogle Scholar |

Inderjit, , and Weiner, J. (2001). Plant allelochemical interference or soil chemical ecology? Perspectives in Plant Ecology, Evolution and Systematics 4, 3–12.
Plant allelochemical interference or soil chemical ecology?Crossref | GoogleScholarGoogle Scholar |

Inderjit, , Kaur, M., and Foy, C. L. (2001). On the significance of field studies in allelopathy. Weed Technology 15, 792–797.
On the significance of field studies in allelopathy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVeitQ%3D%3D&md5=7ad9c9f66615a26129889c57e85fb7c7CAS |

Inskeep, W. P., and Bloom, P. R. (1985). Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiology 77, 483–485.
Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht12jtrc%3D&md5=e8a6d96d25425f1571753425229c30a6CAS |

Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ros), lipid peroxidation, and electrolyte leakage in plants. Plant Stress Tolerance 639, 291–297.
Determination and detection of reactive oxygen species (ros), lipid peroxidation, and electrolyte leakage in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFGgu74%3D&md5=4c061dc78cf594b2958d2cd12a96ba97CAS |

Jarchow, M., and Cook, B. (2009). Allelopathy as a mechanism for the invasion of Typha angustifolia. Plant Ecology 204, 113–124.
Allelopathy as a mechanism for the invasion of Typha angustifolia.Crossref | GoogleScholarGoogle Scholar |

Javaid, A., Shafique, S., and Bajwa, R. (2006). Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus L. South African Journal of Botany 72, 609–612.
Effect of aqueous extracts of allelopathic crops on germination and growth of Parthenium hysterophorus L.Crossref | GoogleScholarGoogle Scholar |

Jayawardana, J. M. C. K., Westbrooke, M., Wilson, M., and Hurst, C. (2006). Macroinvertebrate communities in willow (Salix spp.) and reed beds (Phragmites australis) in central Victorian streams in Australia. Marine and Freshwater Research 57, 429–439.
Macroinvertebrate communities in willow (Salix spp.) and reed beds (Phragmites australis) in central Victorian streams in Australia.Crossref | GoogleScholarGoogle Scholar |

Johnson, G. N., Young, A. J., Scholes, J. D., and Horton, P. (1993). The dissipation of excess excitation energy in British plant species. Plant, Cell & Environment 16, 673–679.
The dissipation of excess excitation energy in British plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVaguro%3D&md5=83d2d0740416542fa5774a1bc9e1e7b2CAS |

Khan, M.A., Kalsoom, U. E., Khan, M. I., Khan, R., and Khan, S. A. (2011). Screening the allelopathic potential of various weeds. Pakistan Journal of Weed Science Research 11, 73–81.

Kobayashi, K. (2004). Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management 4, 1–7.
Factors affecting phytotoxic activity of allelochemicals in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlCqur8%3D&md5=d863ffd9dea91b88204a65255018689cCAS |

Kulshreshtha, M. (1981). Allelochemic influence of some aquatic macrophytes. Acta Limnological Indica 1, 35–37.

Leather, G. R., and Einhellig, F. A. (1988). Bioassay of naturally occurring allelochemicals for phytotoxicity. Journal of Chemical Ecology 14, 1821–1828.
Bioassay of naturally occurring allelochemicals for phytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjsFaitQ%3D%3D&md5=94bb2baacf960f6da6e80c0a7f990d9dCAS |

Levine, J. M., Vilà, M., Antonio, C. M. D., Dukes, J. S., Grigulis, K., and Lavorel, S. (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 775–781.
Mechanisms underlying the impacts of exotic plant invasions.Crossref | GoogleScholarGoogle Scholar |

Li, F.-M., and Hu, H.-Y. (2005). Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology 71, 6545–6553.
Isolation and characterization of a novel antialgal allelochemical from Phragmites communis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ektbnL&md5=b3887852e800f2496b495acfba10e326CAS |

Li, Y. Z., Fan, J. W., Yin, X., Yang, E. Y., Wei, W., Tian, Z. H., and Da, L. J. (2011). Allelopathic interactions between invasive plant Solidago canadensis and native plant Phragmites australis. Journal of Applied Ecology 22, 1373–1380.

Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., and Bazzaz, F. A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10, 689–710.
Biotic invasions: causes, epidemiology, global consequences, and control.Crossref | GoogleScholarGoogle Scholar |

Marwood, C. A., Bestari, K. T. J., Gensemer, R. W., Solomon, K. R., and Greenberg, B. M. (2003). Creosote toxicity to photosynthesis and plant growth in aquatic microcosms. Environmental Toxicology and Chemistry 22, 1075–1085.
Creosote toxicity to photosynthesis and plant growth in aquatic microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFCmsrg%3D&md5=9085b2be89ab02860e979ddef3bd4372CAS |

Mason-Sedun, W., and Jessop, R. (1988). Differential phytotoxicity among species and cultivars of the genus Brassica to wheat. Plant and Soil 107, 69–80.
Differential phytotoxicity among species and cultivars of the genus Brassica to wheat.Crossref | GoogleScholarGoogle Scholar |

McIntyre, D. S. (1980). Basic Relationships for salinity evaluation from measurements on soil solution. Australian Journal of Soil Research 18, 199–206.
Basic Relationships for salinity evaluation from measurements on soil solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmt1entbk%3D&md5=84652d8442dc6d5c4e61d4d45e288919CAS |

Mersie, W., and Singh, M. (1988). Effects of phenolic acids and ragweed parthenium (Parthenium hysterophorus) extracts on tomato (Lycopersicon esculentum) growth and nutrient and chlorophyll content. Weed Science 36, 278–281.
| 1:CAS:528:DyaL1cXksV2qtr4%3D&md5=93843287c38567c0a95246680faa3c82CAS |

Meyerson, L. A., Saltonstall, K., Windham, L., Kiviat, E., and Findlay, S. (2000). A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8, 89–103.
A comparison of Phragmites australis in freshwater and brackish marsh environments in North America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2rurY%3D&md5=7e7b3e162e47008327d308f065efe126CAS |

Morris, K., Boon, P. I., Raulings, E. J., and White, S. D. (2008). Floristic shifts in wetlands: the effects of environmental variables on the interaction between Phragmites australis (common reed) and Melaleuca ericifolia (swamp paperbark). Marine and Freshwater Research 59, 187–204.
Floristic shifts in wetlands: the effects of environmental variables on the interaction between Phragmites australis (common reed) and Melaleuca ericifolia (swamp paperbark).Crossref | GoogleScholarGoogle Scholar |

Neori, A., Reddy, K., Číšková-Končalová, H., and Agami, M. (2000). Bioactive chemicals and biological – biochemical activities and their functions in rhizospheres of wetland plants. Botanical Review 66, 350–378.
Bioactive chemicals and biological – biochemical activities and their functions in rhizospheres of wetland plants.Crossref | GoogleScholarGoogle Scholar |

Oracz, K., Bailly, C., Gniazdowska, A., Côme, D., Corbineau, F., and Bogatek, R. (2007). Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. Journal of Chemical Ecology 33, 251–264.
Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Kltg%3D%3D&md5=026a3ff48e7eeb8e7f90bd8bb5eaf983CAS |

Ostendorp, W. (1989). ‘Die-back’ of reeds in Europe – a critical review of literature. Aquatic Botany 35, 5–26.
‘Die-back’ of reeds in Europe – a critical review of literature.Crossref | GoogleScholarGoogle Scholar |

Pandey, D. K. (1996). Phytotoxicity of sesquiterpene lactone parthenin on aquatic weeds. Journal of Chemical Ecology 22, 151–160.
Phytotoxicity of sesquiterpene lactone parthenin on aquatic weeds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kis7g%3D&md5=cab80b3c187be2c89e3fb9d531ccced4CAS |

Park, M. G., and Blossey, B. (2008). Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae). American Journal of Botany 95, 1557–1568.
Importance of plant traits and herbivory for invasiveness of Phragmites australis (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Qian, Z., Geng, Z.F., and Pei, Q. (2007). Allelopathy in the progress of Phragmites substituting Spartina from salt marsh in northern Jiangsu. Journal of Nanjing University 2, 119–126.

Qin, B., Perry, L. G., Broeckling, C. D., Du, J., Stermitz, F., Paschke, M. W., and Vivanco, J. M. (2006). Phytotoxic allelochemicals from roots and root exudates of leafy spurge (Euphorbia esula L.). Plant Signaling & Behavior 1, 323–327.
Phytotoxic allelochemicals from roots and root exudates of leafy spurge (Euphorbia esula L.).Crossref | GoogleScholarGoogle Scholar |

Rashid, M. H., Asaeda, T., and Uddin, M. N. (2010a). The allelopathic potential of kudzu (Pueraria montana). Weed Science 58, 47–55.
The allelopathic potential of kudzu (Pueraria montana).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSmtbw%3D&md5=1b9050c127e07006a03ce33c8849cd5fCAS |

Rashid, M. H., Asaeda, T., and Uddin, M. N. (2010b). Litter-mediated allelopathic effects of kudzu (Pueraria montana) on Bidens pilosa and Lolium perenne and its persistence in soil. Weed Biology and Management 10, 48–56.
Litter-mediated allelopathic effects of kudzu (Pueraria montana) on Bidens pilosa and Lolium perenne and its persistence in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVanu70%3D&md5=aebe8e820e0254a944be0d7bd060a937CAS |

Rice, E. L. (1984). ‘Allelopathy.’ 2nd edn. (Academic Press: Orlando, FL.)

Roberts, J. (2000). Changes in phragmites australis in south-eastern Australia: a habitat assessment. Folia Geobotanica 35, 353–362.
Changes in phragmites australis in south-eastern Australia: a habitat assessment.Crossref | GoogleScholarGoogle Scholar |

Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., and Bais, H. P. (2007). Root-secreted allelochemical in the noxious weed phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. Journal of Chemical Ecology 33, 1898–1918.
Root-secreted allelochemical in the noxious weed phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOju73K&md5=5aec150d2ea8d564cdd0d4c8d212dc1bCAS |

Rudrappa, T., Seok Choi, Y., Levia, D. F., Legates, D. R., Lee, K. H., and Bais, H. P. (2009). Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant Signaling & Behavior 4, 506–513.
Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFaqsbY%3D&md5=23a12b473e333673d15396d187df17c4CAS |

Saltonstall, K. (2003). A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23, 1043–1047.
A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis.Crossref | GoogleScholarGoogle Scholar |

Sampietro, D. A., Vattuone, M. A., and Isla, M. I. (2006). Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw. Journal of Plant Physiology 163, 837–846.
Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Cgsb4%3D&md5=f26aa25355dc72a31b3c7ed319643c6fCAS |

Sharma, K. P., Khushwaha, S. P. S., and Gopal, B. (1990). Autotoxic effect on Phragmites karka (Retz) Trin. ex Steud. plant on its seed germination. Geobios 17, 287–288.

Silliman, B. R., and Bertness, M. D. (2004). Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology 18, 1424–1434.
Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes.Crossref | GoogleScholarGoogle Scholar |

Singh, M., Sharma, K. P., and Sengar, R. S. (1993). Possible allelopathic interaction between Typha angustata and Phragmites karka. Tropical Ecology 34, 226–229.

Singh, H. P., Batish, D. R., Kaur, S., Arora, K., and Kohli, R. K. (2006). α-Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany 98, 1261–1269.
α-Pinene inhibits growth and induces oxidative stress in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1aksw%3D%3D&md5=f95e5d6f1da523725cb57fa09c9a7880CAS |

Singleton, V. L., and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144–158.
| 1:CAS:528:DyaF28Xit1yhuw%3D%3D&md5=2c56b24fdb2fa57b7cfa4874604269e5CAS |

Swearingen, J., and Saltonstall, K. (2010). Phragmites field guide: distinguishing native and exotic forms of common reed (Phragmites australis) in the United States. In ‘Plant Conservation Alliance, Weeds Gone Wild.’ Available at http://www.nps.gov/plants/alien/pubs/index.htm [accessed 24 August 2012]

Thijs, H., Shann, J. R., and Weidenhamer, J. D. (1994). The effect of phytotoxins on competitive outcome in a model system. Ecology 75, 1959–1964.
The effect of phytotoxins on competitive outcome in a model system.Crossref | GoogleScholarGoogle Scholar |

van der Putten, W. H. (1997). Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-back and Progression (1993–1994). Aquatic Botany 59, 263–275.
Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-back and Progression (1993–1994).Crossref | GoogleScholarGoogle Scholar |

Wardle, D., Nicholson, K., and Ahmed, M. (1992). Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant and Soil 140, 315–319.
Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation.Crossref | GoogleScholarGoogle Scholar |

Wood, A. J., and Jason, R. (2000). A simple & nondestructive technique for measuring plant growth & development. The American Biology Teacher 62, 215–217.
A simple & nondestructive technique for measuring plant growth & development.Crossref | GoogleScholarGoogle Scholar |

Xuan, T. D., Tawata, S., Khanh, T. D., and Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal Agronomy & Crop Science 191, 162–171.
Decomposition of allelopathic plants in soil.Crossref | GoogleScholarGoogle Scholar |