Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Zinc marine biogeochemistry in seawater: a review

Marie Sinoir A B G , Edward C. V. Butler A F , Andrew R. Bowie B C , Mathieu Mongin A , Pavel N. Nesterenko D and Christel S. Hassler E
+ Author Affiliations
- Author Affiliations

A CSIRO Marine and Atmospheric Research, Hobart Laboratories, Hobart, Tas. 7000, Australia.

B Institute for Marine and Antarctic Studies – Sandy Bay, Private Bag 129, Hobart, Tas. 7001, Australia.

C Antarctic Climate and Ecosystem Cooperative Research Centre (ACE CRC), University of Tasmania, Hobart, Tas. 7001, Australia.

D Australian Centre for Research on Separation Science (ACROSS) School of Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia.

E Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, NSW 2007, Australia.

F Present address: Australian Institute of Marine Science, Arafura Timor Research Facility, Brinkin, NT 8010, Australia.

G Corresponding author. Email: Marie.Sinoir@csiro.au

Marine and Freshwater Research 63(7) 644-657 https://doi.org/10.1071/MF11286
Submitted: 23 December 2011  Accepted: 18 May 2012   Published: 4 July 2012

Abstract

The interest in trace element biogeochemistry has arisen from the well demonstrated iron hypothesis that revealed the central role that iron exerts on oceanic primary and associated biogeochemical cycles. The essentiality of zinc for key biological enzymes, coupled with a nutrient-like vertical distribution with low dissolved concentrations in many marine surface waters, provided motivation to study zinc in marine systems. Laboratory studies have confirmed the importance of zinc to sustain phytoplankton growth and its influence on the composition of the phytoplankton community. However, mixed results were obtained in the field, which suggest a more subtle effect of zinc on oceanic phytoplankton growth than iron. As a consequence, consensus on its biological role, mechanisms at play or regional versus global relevance is currently lacking and highlights the need for new conceptual models of zinc in marine systems. The recent GEOTRACES program is generating new data approaches to discuss and understand further zinc behaviour in the ocean.

Additional keywords: cycling, determination, limitation, modelling, speciation.


References

Achterberg, E. P., and van den Berg, C. M. G. (1996). Automated monitoring of Ni, Cu and Zn in the Irish Sea. Marine Pollution Bulletin 32, 471–479.
Automated monitoring of Ni, Cu and Zn in the Irish Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Smt74%3D&md5=7dc7e1e36a762e73c72cfa93b41db5bfCAS |

Andersen, M. B., Vance, D., Archer, C., Anderson, R. F., Ellwood, M. J., and Allen, C. (2011). The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface water. Earth and Planetary Science Letters 301, 137–145.
The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agurrP&md5=2cca29480fa4b3856b737b09c9e04617CAS |

Anderson, M. A., Morel, F. M. M., and Guillard, R. R. L. (1978). Growth limitation of a coastal diatom by low zinc ion activity. Nature 276, 70–71.
Growth limitation of a coastal diatom by low zinc ion activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1arsr8%3D&md5=f110291b7894e969a8e4412b122c7176CAS |

Ardelan, M. V., Steinnes, E., Lierhagen, S., and Linde, S. O. (2009). Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. The Science of the Total Environment 407, 6255–6266.
Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCmt77J&md5=4bac316589d704250bd4538f507390eaCAS |

Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature 437, 349–355.
Marine microorganisms and global nutrient cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOrtLk%3D&md5=6d3c61959042040aa312259cdf3e07acCAS |

Baars, O., and Croot, P. L. (2011). The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 2720–2732.
The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7bL&md5=b97be0cc31756a9e1ba83db8121f69cbCAS |

Badger, M. (2003). The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynthesis Research 77, 83–94.
The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2mt7c%3D&md5=f12d2320bdee1fc39b8a4ce480ec3231CAS |

Bermin, J., Vance, D., Archer, C., and Statham, P. J. (2006). The determination of the isotopic composition of Cu and Zn in seawater. Chemical Geology 226, 280–297.
The determination of the isotopic composition of Cu and Zn in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFGgu74%3D&md5=d78445fe999b4294c1346d75bd844669CAS |

Blencowe, D. K., and Morby, A. P. (2003). Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews 27, 291–311.
Zn(II) metabolism in prokaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7g%3D&md5=4e38846c19e76cac863d27ea9ec7871cCAS |

Blindauer, C. A. (2008). Zinc-handling in cyanobacteria: An update. Chemistry & Biodiversity 5, 1990–2013.
Zinc-handling in cyanobacteria: An update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWktLrM&md5=1e96c7059cb4d4d32f495b167892d1a1CAS |

Bowie, A. R., and Lohan, M. C. (2009). Determination of iron in seawater. In ‘Practical Guidelines for the Analysis of Seawater’. (Ed. O. Wurl.) pp. 235–258. (CRC Press, Taylor Francis group: London.)

Bowie, A. R., Maldonado, M. T., Frew, R. D., Croot, P. L., Achterberg, E. P., Mantoura, R. F. C., Worsfold, P. J., Law, C. S., and Boyd, P. W. (2001). The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-sea Research. Part II, Topical Studies in Oceanography 48, 2703–2743.
The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ent7o%3D&md5=3ac4b909f6336a662735fae09c2c1001CAS |

Bruland, K. W. (1989). Complexation of zinc by natural organic ligands in the central north pacific. Limnology and Oceanography 34, 269–285.
Complexation of zinc by natural organic ligands in the central north pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVeltrs%3D&md5=e7d97262f9d1bc38e2037264aac0c813CAS |

Bruland, K. W., and Lohan, M. C. (2003). Controls of trace metals in seawater. In ‘Treatise on Geochemistry’. (Eds H. D. Holland and K. K. Turekian.) pp. 23–47. (Pergamon: Oxford.)

Bruland, K. W., Franks, R. P., Knauer, G. A., and Martin, J. H. (1979). Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water. Analytica Chimica Acta 105, 233–245.
Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitV2rt74%3D&md5=352a9a963758aa808a52e29114651517CAS |

Bruland, K. W., Donat, J. R., and Hutchins, D. A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography 36, 1555–1577.
Interactive influences of bioactive trace metals on biological production in oceanic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xktleis7w%3D&md5=45fe584ad27482b561efee842077d3b2CAS |

Bruland, K. W., Orians, K. J., and Cowen, J. P. (1994). Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta 58, 3171–3182.
Reactive trace metals in the stratified central North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1Witbw%3D&md5=8e420a7df618b930a7e1118713bdce37CAS |

Campbell, P. G. C., Errécalde, O., Fortin, C., Hiriart-Baer, V. P., and Vigneault, B. (2002). Metal bioavailability to phytoplankton–applicability of the biotic ligand model. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 133, 189–206.
Metal bioavailability to phytoplankton–applicability of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar |

Chaudry, M. A., and Zwolsman, J. J. G. (2008). Seasonal dynamics of dissolved trace metals in the Scheldt Estuary: relationship with redox conditions and phytoplankton activity. Estuaries and Coasts 31, 430–443.
Seasonal dynamics of dissolved trace metals in the Scheldt Estuary: relationship with redox conditions and phytoplankton activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFGisLY%3D&md5=efd837953796f2d3cb202f811eddcb9cCAS |

Coale, K. H., Wang, X., Tanner, S. J., and Johnson, K. S. (2003). Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep Sea Research Part II: Topical Studies in Oceanography 50, 635–653.
Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1WnsLs%3D&md5=f7b6e5f7bc9600245d6f83842533215eCAS |

Coale, K. H., Michael Gordon, R., and Wang, X. (2005). The distribution and behaviour of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170°W. Deep-sea Research. Part I, Oceanographic Research Papers 52, 295–318.
The distribution and behaviour of dissolved and particulate iron and zinc in the Ross Sea and Antarctic circumpolar current along 170°W.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejtLg%3D&md5=f6c0d559b59639aebae45f2e73ba2037CAS |

Coleman, J. E. (1992). Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics and Biomolecular Structure 21, 441–483.
Structure and mechanism of alkaline phosphatase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Kqsr4%3D&md5=ff3e2c32e52f6e1b66724c935ac26433CAS |

Coleman, J. E. (1998). Zinc enzymes. Current Opinion in Chemical Biology 2, 222–234.
Zinc enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1OltL8%3D&md5=e71d04deb73a8d2b177838c650bec7e7CAS |

Cotton, F. A., Wilkinson, K. J., Murillo, C. A., and Bochmann, M. (1999). The group 12 elements: Zn, Cd, Hg. In ‘Advanced inorganic chemistry, 6th Edition’. (Ed. F. A. Cotton.) pp. 598–629. (Wiley: New York.).

Crawford, D. W., Lipsen, M. S., Purdie, D. A., Lohan, M. C., Statham, P. J., Whitney, F. A., Putland, J. N., Johnson, W. K., Sutherland, N., Peterson, T. D., Harrison, P. J., and Wong, C. S. (2003). Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnology and Oceanography 48, 1583–1600.
Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCkurw%3D&md5=22862080c003e72183be28d332d0798eCAS |

Croot, P. L., Baars, O., and Streu, P. (2011). The distribution of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 58, 2707–2719.
| 1:CAS:528:DC%2BC3MXhtlagu7bK&md5=9007bfc254e49cdce4c3cf9e4e545680CAS |

Csopak, H. (1969). The specific binding of zinc (II) to alkaline phosphatase of Escherichia coli. European Journal of Biochemistry 7, 186–192.
| 1:CAS:528:DyaF1MXksVCisQ%3D%3D&md5=77aa966c9240503dbdc690b06c7edbb3CAS |

Cullen, J. T., and Sherrell, R. M. (2005). Effects of dissolved carbon dioxide, zinc, manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnology and Oceanography 50, 1193–1204.
Effects of dissolved carbon dioxide, zinc, manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWqsrw%3D&md5=e5172e373a02cd5be010a8d803975adcCAS |

Cutter, G., Andersson, P., Codispoti, L., Croot, P., François, R., Lohan, M. C., Obata, H., and Rutgers, M. (2010). Sampling and sample-handling protocols for GEOTRACES cruises. (Ed. GEOTRACES Standards and Intercalibration Committee.) GEOTRACES Library, available at http://www.geotraces.org/libraries/documents/Intercalibration/Cookbook.pdf [accessed 4 January 2010]

de la Rocha, C. L., David, A. H., Mark, A. B., and Yaohong, Z. (2000). Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Marine Ecology Progress Series 195, 71–79.
Effects of iron and zinc deficiency on elemental composition and silica production by diatoms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFChsLg%3D&md5=6b9b0607b0b005a3a3c789caca9f552aCAS |

Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., and Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical Basis. Environmental Toxicology and Chemistry 20, 2383–2396.
Biotic ligand model of the acute toxicity of metals. 1. Technical Basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=a348c76564e1ca5128563e4172f74590CAS |

Donat, J. R., and Bruland, K. W. (1990). A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry 28, 301–323.
A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1artLo%3D&md5=39ce8e33e566d311c9616997efb74671CAS |

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192.
Ocean acidification: the other CO2 problem.Crossref | GoogleScholarGoogle Scholar |

Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 1763, 711–722.
Zinc transporters and the cellular trafficking of zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFGqu7g%3D&md5=8098196939971d77e41ea6571b8c9b62CAS |

Ellwood, M. J. (2004). Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry 87, 37–58.
Zinc and cadmium speciation in subantarctic waters east of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGmu7s%3D&md5=b6dc48564f7ad3d5d94dd941af9cd997CAS |

Ellwood, M. J. (2008). Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E. Marine Chemistry 112, 107–117.
Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOnurnE&md5=0b63f77866ec924c33c315cc5bd576a0CAS |

Ellwood, M. J., and Hunter, K. A. (2000). Variations in the Zn/Si record over the last interglacial glacial transition. Paleoceanography 15, 506–514.
Variations in the Zn/Si record over the last interglacial glacial transition.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J., and van den Berg, C. M. G. (2000). Zinc speciation in the Northeastern Atlantic Ocean. Marine Chemistry 68, 295–306.
Zinc speciation in the Northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptF2kug%3D%3D&md5=b562251f09ba61fb0ff35b73f8c2f94aCAS |

Ferguson, J. (1983). Concentrations and speciation of lead, zinc and cadmium in seawater-like smelter effluent and adjacent marine environments, Port Pirie, South Australia. Marine and Freshwater Research 34, 375–385.
Concentrations and speciation of lead, zinc and cadmium in seawater-like smelter effluent and adjacent marine environments, Port Pirie, South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVeisLo%3D&md5=9b5b190cc7f2390bdd26747160514923CAS |

Franck, V. M., Bruland, K. W., Hutchins, D. A., and Brzezinski, M. A. (2003). Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions. Marine Ecology Progress Series 252, 15–33.
Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVOjsLY%3D&md5=6e4ba0475040e55856a8005ef8883142CAS |

Frew, R. D., Hutchins, D. A., Nodder, S., Sanudo-Wilhelmy, S., Tovar-Sanchez, A., Leblanc, K., Hare, C. E., and Boyd, P. W. (2006). Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global Biogeochemical Cycles 20, GB1S93.
Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Gaither, L. A., and Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. Biometals 14, 251–270.
Eukaryotic zinc transporters and their regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFWrtw%3D%3D&md5=ca870671e444831811af43bd5a5a5157CAS |

Gatti, D., Mitra, B., and Rosen, B. P. (2000). Escherichia coli soft metal ion-translocating ATPases. The Journal of Biological Chemistry 275, 34 009–34 012.
Escherichia coli soft metal ion-translocating ATPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFWmtbg%3D&md5=2cb75949a96a994a937249dbfcc67aeeCAS |

Gélabert, A., Pokrovsky, O. S., Schott, J., Boudou, A., Feurtet-Mazel, A., Mielczarski, J., Mielczarski, E., Mesmer-Dudons, N., and Spalla, O. (2004). Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species. Geochimica et Cosmochimica Acta 68, 4039–4058.
Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species.Crossref | GoogleScholarGoogle Scholar |

Gélabert, A., Pokrovsky, O. S., Viers, J., Schott, J., Boudou, A., and Feurtet-Mazel, A. (2006). Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochimica et Cosmochimica Acta 70, 839–857.
Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation.Crossref | GoogleScholarGoogle Scholar |

González-Dávila, M. (1995). The role of phytoplankton cells on the control of heavy metal concentration in seawater. Marine Chemistry 48, 215–236.
The role of phytoplankton cells on the control of heavy metal concentration in seawater.Crossref | GoogleScholarGoogle Scholar |

Gosnell, K. J., Landing, W. M., and Milne, A. (2012). Fluorometric detection of total dissolved zinc in the southern Indian Ocean. Marine Chemistry , .
Fluorometric detection of total dissolved zinc in the southern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Grand, M., Oliveira, H. M., Ruzicka, J., and Measures, C. (2011). Determination of dissolved zinc in seawater using micro-sequential injection lab-on-valve with fluorescence detection. Analyst (London) 136, 2747–2755.
Determination of dissolved zinc in seawater using micro-sequential injection lab-on-valve with fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyrsLk%3D&md5=9ccff3e629acafe4ea6d09cdd94a8027CAS |

Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA) – Biomembranes 1465, 190–198.
The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA) –Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1WgtrY%3D&md5=59a772ce4ebee3613fd587ae08ebdba6CAS |

Gustin, J. L., Zanis, M. J., and Salt, D. E. (2011). Structure and evolution of the plant cation diffusion facilitator family of ion transporters. BMC Evolutionary Biology 11, 76.
Structure and evolution of the plant cation diffusion facilitator family of ion transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVOrt7Y%3D&md5=525c516c2d1fefcf8591f58b97e1cdb2CAS |

Hassler, C. S., and Wilkinson, K. J. (2003). Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environmental Toxicology and Chemistry 22, 620–626.
| 1:CAS:528:DC%2BD3sXhtlCkurs%3D&md5=355a1a2c45f432d62a2cbf6ac5ba051eCAS |

Hassler, C. S., Slaveykova, V. I., and Wilkinson, K. J. (2004). Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environmental Toxicology and Chemistry 23, 283–291.
Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFygtg%3D%3D&md5=d9694133d7d19770450d2cecf150e421CAS |

Hassler, C. S., Sinoir, M., Clementson, L. A., and Butler, E. C. V. (). Exploring the link between micro-nutrients and phytoplankton in the Southern Ocean during the 2007 austral summer. Frontiers of Microbiology , .

Hassler, C. S., Schoemann, V., Boye, M., Tagliabue, A., Rozmarynowycz, M., and McKay, R. M. L. (). Iron bioavailability in the Southern Ocean. Oceanography and Marine Biology: An annual review 50, 1–64.

Hecky, R. E., Mopper, K., Kilham, P., and Degens, E. T. (1973). The amino acid and sugar composition of diatom cell-walls. Marine Biology 19, 323–331.
The amino acid and sugar composition of diatom cell-walls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlt1art7w%3D&md5=642e9728ae23ab21371a0b1a11c16418CAS |

Heijerick, D. G., de Schamphelaere, K. A C., and Janssen, C. R. (2002). Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 133, 207–218.
Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nmsFGgtg%3D%3D&md5=184ab2b08d9c9eb980bf9c2ce483052fCAS |

Hendry, K. R., and Rickaby, R. E. M. (2008). Opal (Zn/Si) ratios as a nearshore geochemical proxy in coastal Antarctica. Paleoceanography 23, .
Opal (Zn/Si) ratios as a nearshore geochemical proxy in coastal Antarctica.Crossref | GoogleScholarGoogle Scholar |

Hoppe, H. G. (2003). Phosphatase activity in the sea. Hydrobiologia 493, 187–200.
Phosphatase activity in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Wrt70%3D&md5=f670a4e135c690731fe537e592c57fffCAS |

Hudson, R. J. M. (1998). Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. The Science of the Total Environment 219, 95–115.
Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrw%3D&md5=bf59fde0535745888fccc391cffc0d21CAS |

Hudson, R. J. M., and Morel, F. M. M. (1993). Trace metal transport by marine microorganisms: implications of metal coordination kinetics. Deep-sea Research. Part I, Oceanographic Research Papers 40, 129–150.
Trace metal transport by marine microorganisms: implications of metal coordination kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVCksrw%3D&md5=295a4fd4e8c521517b7a73f5c59ddca6CAS |

Jaccard, T., Ariztegui, D., and Wilkinson, K. J. (2009). Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chemical Geology 265, 381–386.
Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Ont7Y%3D&md5=04c6ccf76770ababe910c8c5191293ebCAS |

John, S. G., Geis, R. W., Saito, M. A., and Boyle, E. A. (2007). Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanic. Limnology and Oceanography 52, 2710–2714.
Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCnsLrM&md5=968fb157831b811ba97197daf14f80efCAS |

Kupriyanova, E. V., and Pronina, N. A. (2011). Carbonic anhydrase: enzyme that has transformed the biosphere. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 58, 197–209.
Carbonic anhydrase: enzyme that has transformed the biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKnuro%3D&md5=761fc7d74e259124941d1c795292c926CAS |

Landing, W. M., Haraldsson, C., and Paxeus, N. (1986). Vinyl polymer agglomerate based transition metal cation-chelating ion-exchange resin containing the 8-hydroxyquinoline functional group. Analytical Chemistry 58, 3031–3035.
Vinyl polymer agglomerate based transition metal cation-chelating ion-exchange resin containing the 8-hydroxyquinoline functional group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlslyjtbw%3D&md5=f3a95644b69ac3306e4dc0db9f778f62CAS |

Lane, T. W., and Morel, F. M. M. (2000). Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiology 123, 345–352.
Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFems7c%3D&md5=dd984f8254b0bdf3e0a4ddc788c6f606CAS |

Lannuzel, D., Bowie, A. R., van der Merwe, P. C., Townsend, A. T., and Schoemann, V. (2011). Distribution of dissolved and particulate metals in Antarctic sea ice. Marine Chemistry 124, 134–146.
Distribution of dissolved and particulate metals in Antarctic sea ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCgt7k%3D&md5=b5850eaa326b1805edd0ea4c8b011b29CAS |

Leblanc, K., Hare, C. E., Boyd, P. W., Bruland, K. W., Sohst, B., Pickmere, S., Lohan, M. C., Buck, K., Ellwood, M., and Hutchins, D. A. (2005). Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas. Deep-sea Research. Part I, Oceanographic Research Papers 52, 1842–1864.
Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1aqu7c%3D&md5=7643e05538c9caa88f9a55512d690735CAS |

Lohan, M. C., Statham, P. J., and Crawford, D. W. (2002). Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep-sea Research. Part II, Topical Studies in Oceanography 49, 5793–5808.
Total dissolved zinc in the upper water column of the subarctic North East Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Wnsbg%3D&md5=fffd6038d888b02bd43ad824e7571904CAS |

Löscher, B. M. (1999). Relationships among Ni, Cu, Zn, and major nutrients in the Southern Ocean. Marine Chemistry 67, 67–102.
Relationships among Ni, Cu, Zn, and major nutrients in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Martin, J. H., Gordon, R. M., and Fitzwater, S. E. (1990). Iron in the Antarctic waters. Nature 345, 156–158.
Iron in the Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGrtb0%3D&md5=74e519d2c0ac2821b1f50765943051f4CAS |

Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, Ü., Müller-Röber, B., and Schultz, B. (2002). Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta 214, 345–355.
Multifunctionality of plant ABC transporters – more than just detoxifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGksA%3D%3D&md5=0e1524fd2a672b2facef53153dcd4810CAS |

Marx, S. K., Kamber, B. S., and McGowan, H. A. (2008). Scavenging of atmospheric trace metal pollutants by mineral dusts: Inter-regional transport of Australian trace metal pollution to New Zealand. Atmospheric Environment 42, 2460–2478.
Scavenging of atmospheric trace metal pollutants by mineral dusts: Inter-regional transport of Australian trace metal pollution to New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOhsb4%3D&md5=013f4bd8e577dd51cc5ad4888267a676CAS |

McGinn, P. J., and Morel, F. M. M. (2008). Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiologia Plantarum 133, 78–91.
Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFeqsbs%3D&md5=64fe3a036d845df7c0b66ec1bd978077CAS |

McGowan, H., and Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmospheric Environment 42, 6915–6925.
Identification of dust transport pathways from Lake Eyre, Australia using Hysplit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqs7nL&md5=cb8fe282e9386fbdf910f25d572f5c03CAS |

McKay, R. M. L., Wilhem, S. W., Hall, J., Hutchins, D. A., Al-Rshaidat, M. M. D., Mioni, C. E., Pickmere, S., Porta, D., and Boyd, P. W. (2005). Impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of New Zealand during FeCycle. Global Biogeochemical Cycles 19, GB4S24.
Impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of New Zealand during FeCycle.Crossref | GoogleScholarGoogle Scholar |

Millero, F. J., Woosley, R., DiTrolio, B., and Waters, J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography (Washington, D.C.) 22, 72–85.
Effect of ocean acidification on the speciation of metals in seawater.Crossref | GoogleScholarGoogle Scholar |

Morel, F. M. M. (1983). ‘Principles of Aquatic Chemistry.’ pp. 300–309. (Wiley: New York).

Morel, F. M. M. (2008). The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 6, 318–324.
The co-evolution of phytoplankton and trace element cycles in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCrsL4%3D&md5=cb55b94301b27e8d1c8bc5c51e02f8eaCAS |

Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee, J. G., and Yee, D. (1994). Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742.
Zinc and carbon co-limitation of marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt12lur8%3D&md5=3832cf475ee96f6abfcd0f47c3e42c6bCAS |

Morel, F. M. M., Cox, E. H., Kraepiel, A. M. L., Lane, T. W., Milligan, A. J., Schaperdoth, I., Reinfelder, J. R., and Tortell, P. D. (2002). Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional Plant Biology 29, 301–308.
Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVClt7k%3D&md5=93e94e434cfa8f770ebb58133da87bdfCAS |

Morel, F. M. M., Milligan, A. J., Saito, M. A., Heinrich, D. H., and Karl, K. T. (2003). Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In ‘Treatise on Geochemistry’.(Eds H. D. Holland and K. K. Turekian.) pp. 113–143. (Pergamon: Oxford).

Moussatova, A., Kandt, C., O’Mara, M. L., and Tieleman, D. P. (2008). ATP-binding cassette transporters in Escherichia coli. Biochimica et Biophysica Acta (BBA) – Biomembranes 1778, 1757–1771.
ATP-binding cassette transporters in Escherichia coli. Biochimica et Biophysica Acta (BBA) –Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnt77P&md5=b9589e488c8eb890b301d40b3ae1b8dbCAS |

Muller, F. L. L., Jacquet, S., and Wilson, W. H. (2003). Biological factors regulating the chemical speciation of cu, zn, and mn under different nutrient regimes in a marine mesocosm experiment. Limnology and Oceanography 48, 2289–2302.
Biological factors regulating the chemical speciation of cu, zn, and mn under different nutrient regimes in a marine mesocosm experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagt74%3D&md5=ab105404ed54938c9d9f05801cae6611CAS |

Nolting, R. F., Heijne, M., de Jong, J. T. M., Timmermans, K. R., and de Baar, H. J. W. (2000). The determination and distribution of Zn in surface water samples collected in the northeast Atlantic Ocean. Journal of Environmental Monitoring 2, 534–538.
The determination and distribution of Zn in surface water samples collected in the northeast Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFeqt78%3D&md5=6588782e1f36abe2b6076dbdcb7556a5CAS |

Nowicki, J. L., Johnson, K. S., Coale, K. H., Elrod, V. A., and Lieberman, S. H. (1994). Determination of zinc in seawater using flow injection analysis with fluorometric detection. Analytical Chemistry 66, 2732–2738.
Determination of zinc in seawater using flow injection analysis with fluorometric detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFOisr8%3D&md5=47d7fa8e60769874a7339f7c3d77fcb8CAS |

Oste, L. A., Temminghoff, E. J. M., Lexmond, T. M., and van Riemsdijk, W. H. (2002). Measuring and modeling zinc and cadmium binding by humic acid. Analytical Chemistry 74, 856–862.
Measuring and modeling zinc and cadmium binding by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVeksA%3D%3D&md5=b3b1231f9ee15739ebb5709aae49128eCAS |

Pagenkopf, G. (1983). Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science & Technology 17, 342–347.
Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhvFart7Y%3D&md5=414fa9adfc607f0bc7de790f407ad81dCAS |

Park, H., Song, B., and Morel, F. M. M. (2007). Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environmental Microbiology 9, 403–413.
Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Shu7c%3D&md5=ec43455948447411d46d2d4d49c978d3CAS |

Patterson, C. C., and Settle, D. M. (1976). The reduction of orders of magnitude errors in lead analysis of biological materials and natural waters by controlling external sources of industrial Pb contamination introduced during sample collection and handling. In ‘Reliability in Trace Analysis’. (Ed. D. M. La Fleur.) pp. 321–351. Special Publication 422, National Bureau of Standards, Washington.

Perales-Vela, H. V., Peña-Castro, J. M., and Cañizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64, 1–10.
Heavy metal detoxification in eukaryotic microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cntb8%3D&md5=98f57facb0c9518039011cd8b35c21d0CAS |

Playle, R. C. (1998). Modelling metal interactions at fish gills. The Science of the Total Environment 219, 147–163.
Modelling metal interactions at fish gills.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrs%3D&md5=35b093835d0d7ad0edb38eaace11d8afCAS |

Plocke, D. J., Levinthal, C., and Vallee, B. L. (1962). Alkaline phosphatase of Escherichia coli: a zinc metalloenzyme. Biochemistry 1, 373–378.
Alkaline phosphatase of Escherichia coli: a zinc metalloenzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktFans7o%3D&md5=d63ae10daf35344956c175b9e72ea79dCAS |

Price, N. M., and Morel, F. M. M. (1990). Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660.
Cadmium and cobalt substitution for zinc in a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFeksLY%3D&md5=805952ab25411ad39b36ea04628ae7d5CAS |

Roberts, S. B., Lane, T. W., and Morel, F. M. M. (1997). Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology 33, 845–850.
Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1eltbo%3D&md5=50bfbc72a2fe415bba9218de0d36eb26CAS |

Saito, M. A., and Goepfert, T. J. (2008). Zinc-cobalt colimitation of Phaeocystis Antarctica. Limnology and Oceanography 53, 266–275.
Zinc-cobalt colimitation of Phaeocystis Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVGjsLw%3D&md5=6bada5446e1ed522482b260a10333960CAS |

Saito, M. A., Moffett, J. W., Chisholm, S. W., and Waterbury, J. B. (2002). Cobalt limitation and uptake in Prochlorococcus. Limnology and Oceanography 47, 1629–1636.
Cobalt limitation and uptake in Prochlorococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1KqtL4%3D&md5=9f8a15085b652f789bd46f0eb5f56043CAS |

Saito, M. A., Goepfert, T. J., and Ritt, J. T. (2008). Some thoughts on the concept of co-limitation: Three definitions and the importance of bioavailability. Limnology and Oceanography 53, 276–290.
Some thoughts on the concept of co-limitation: Three definitions and the importance of bioavailability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVGjsL0%3D&md5=56dd103ffc7007d6da8524bb8cae7173CAS |

Schmitt, L., and Tampé, R. (2002). Structure and mechanism of ABC transporters. Current Opinion in Structural Biology 12, 754–760.
Structure and mechanism of ABC transporters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslSksL4%3D&md5=472bbf3a67f49335bafb0ef8715f66c7CAS |

Shaked, Y., Xu, Y., Leblanc, K., and Morel, F. M. M. (2006). Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and Oceanography 51, 299–309.
Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqtLY%3D&md5=b38c93522e21f508869aa679d16ec0bcCAS |

Smith, D. S., Bell, R. A., and Kramer, J. R. (2002). Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 133, 65–74.
Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites.Crossref | GoogleScholarGoogle Scholar |

Spokes, L., Jickells, T., and Jarvis, K. (2001). Atmospheric inputs of trace metals to the northeast Atlantic Ocean: the importance of southeasterly flow. Marine Chemistry 76, 319–330.
Atmospheric inputs of trace metals to the northeast Atlantic Ocean: the importance of southeasterly flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosF2ntLw%3D&md5=8fcbfc830f16a390aa1a26325bad3ed3CAS |

Sunda, W. G., and Huntsman, S. A. (1992). Feedback interactions between zinc and phytoplankton in seawater. Limnology and Oceanography 37, 25–40.
Feedback interactions between zinc and phytoplankton in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOqsrg%3D&md5=27d67e0bbd56df63a02bd88ea240be43CAS |

Sunda, W. G., and Huntsman, S. A. (1995). Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnology and Oceanography 40, 1404–1417.
Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvVOltw%3D%3D&md5=ae1e6b89ebb6b9192250d9dd99c0c65fCAS |

Sunda, W. G., and Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. The Science of the Total Environment 219, 165–181.
Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrg%3D&md5=084caa23ea7f4e19d6ff3b214c89adebCAS |

Sunda, W. G., and Huntsman, S. A. (2000). Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnology and Oceanography 45, 1501–1516.
Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFymt74%3D&md5=04b60462de3a5aa0a4a9f8c4c0d1e437CAS |

Sunda, W. G., and Huntsman, S. A. (2005). Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnology and Oceanography 50, 1181–1192.
Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWqsr8%3D&md5=1d8ff0ad00e5075e0347994f2093d9caCAS |

Timmermans, K. R., Snoek, J., Gerringa, L. J. A., Zondervan, I., and de Baar, H. J. W. (2001). Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae). Limnology and Oceanography 46, 699–703.
Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVaht7o%3D&md5=38b89c4c0dac2d3999f18ffc23945678CAS |

Tipping, E. (1994). WHAM – A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Computers & Geosciences 20, 973–1023.
WHAM – A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=d864d51ed6a8af35eeae76121ad1170fCAS |

Tipping, E. (1998). Humic ion-binding model vi: an improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry 4, 3–47.
Humic ion-binding model vi: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=92c691a1b78cb87a5581855095e9d5c4CAS |

Turner, D. R. (1995). Problems in Trace Metal Speciation Modeling. In ‘Metal speciation and bioavailability in aquatic systems’. (Eds A. Tessier and D.R. Turner.) pp. 149–203. (John Wiley & Sons, Ltd: Chichester.)

Twining, B. S., Baines, S. B., Vogt, S., and de Jonge, M. D. (2008). Exploring ocean biogeochemistry by single-cell microprobe analysis of protist elemental composition. The Journal of Eukaryotic Microbiology 55, 151–162.
Exploring ocean biogeochemistry by single-cell microprobe analysis of protist elemental composition.Crossref | GoogleScholarGoogle Scholar |

van den Berg, C. M. G. (1985). Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc – APDC complex ions. Marine Chemistry 16, 121–130.
Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc – APDC complex ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltV2lt7g%3D&md5=e36d99177dd58c8b3041cd68f4f56908CAS |

van Leeuwen, H. P., Town, R. M., Buffle, J., Cleven, R. F. M. J., Davison, W., Puy, J., van Riemsdijk, W. H., and Sigg, L. (2005). Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environmental Science & Technology 39, 8545–8556.
Dynamic speciation analysis and bioavailability of metals in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73M&md5=90425383be444b7174c04d7080fd0e2aCAS |

Varela, D. E., Willers, V., and Craawford, D. W. (2011). Effect of zinc availability on growth, morphology, and nutrient incorporation in a coastal and an oceanic diatom. Journal of Phycology 47, 302–312.
Effect of zinc availability on growth, morphology, and nutrient incorporation in a coastal and an oceanic diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFCktbY%3D&md5=701f77288cecc98b5850461afbd6bdedCAS |

Whitfield, M. (2001). Interactions between phytoplankton and trace metals in the ocean. Advances in Marine Biology 41, 1–128.
Interactions between phytoplankton and trace metals in the ocean.Crossref | GoogleScholarGoogle Scholar |

Williams, L. E., Pittman, J. K., and Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta (BBA) – Biomembranes 1465, 104–126.
Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta (BBA) – Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Wgtr0%3D&md5=401d43b912bcec0c73380e97cbd2d663CAS |

Willie, S. N., Lam, J. W. H., Yang, L., and Tao, G. (2001). On-line removal of Ca, Na and Mg from iminodiacetate resin for the determination of trace elements in seawater and fish otoliths by flow injection ICP-MS. Analytica Chimica Acta 447, 143–152.
On-line removal of Ca, Na and Mg from iminodiacetate resin for the determination of trace elements in seawater and fish otoliths by flow injection ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlClu7c%3D&md5=2ef9bea3b599a27c3247459ab1be9eaaCAS |

Wisniewski Jakuba, R., Moffet, J. W., and Dyhrman, S. T. (2008a). Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles 22, .
Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Wisniewski Jakuba, R., Moffett, J. W., and Saito, M. A. (2008b). Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Analytica Chimica Acta 614, 143–152.
Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Witt, M., Baker, A. R., and Jickells, T. D. (2006). Atmospheric trace metals over the Atlantic and South Indian Oceans: investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols. Atmospheric Environment 40, 5435–5451.
Atmospheric trace metals over the Atlantic and South Indian Oceans: investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1GksLk%3D&md5=cf5fb9cbe217b6f0594f8c0261f6939bCAS |

Yang, R. J., and van den Berg, C. M. G. (2009). Metal complexation by humic substances in seawater. Environmental Science & Technology 43, 7192–7197.
Metal complexation by humic substances in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFOisr8%3D&md5=cd1adee3e8ca9950dd916e837a57596bCAS |

Yebra-Biurrun, M. C., and Cespón-Romero, R. M. (2006). Minicolumn field sampling-preconcentration of trace zinc from seawater and its laboratory detection by flow injection flame atomic absorption spectrometry. Analytical Sciences 22, 51–55.
Minicolumn field sampling-preconcentration of trace zinc from seawater and its laboratory detection by flow injection flame atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVyisQ%3D%3D&md5=e6e852acc807cfaf97c900b86df11383CAS |

Yee, D., and Morel, F. M. M. (1996). In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnology and Oceanography 41, 573–577.
In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFKhtLw%3D&md5=3e437aad4afa269b5c553bfdeebc0860CAS |

Zhang, Y., Fomenko, D. E., and Gladyshev, V. N. (2005). The microbial selenoproteome of the Sargasso Sea. Genome Biology 6, R37.
The microbial selenoproteome of the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar |

Zirino, A., and Yamamoto, S. (1972). A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in seawater. Limnology and Oceanography 17, 661–671.
A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXht1yhurc%3D&md5=28815a20e8200560f9746419e8655c63CAS |