Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment
Lynda C. Radke A C , Zhi Huang A , Rachel Przeslawski A , Ian T. Webster B , Matthew A. McArthur A , Tara J. Anderson A , P. Justy Siwabessy A and Brendan P. Brooke AA Marine and Coastal Environment Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia.
B CSIRO Land and Water, Canberra, ACT 2601, Australia.
C Corresponding author. Email: Lynda.Radke@ga.gov.au
Marine and Freshwater Research 62(12) 1432-1448 https://doi.org/10.1071/MF11110
Submitted: 13 May 2011 Accepted: 3 September 2011 Published: 25 October 2011
Abstract
Mapping of benthic habitats seldom considers biogeochemical variables or changes across time. We aimed to: (i) develop winter and summer benthic habitat maps for a sandy embayment; and (ii) compare the effectiveness of various maps for differentiating infauna. Patch types (internally homogeneous areas of seafloor) were constructed using combinations of abiotic parameters and are presented in sediment-based, biogeochemistry-based and combined sediment–biogeochemistry-based habitat maps. August and February surveys were undertaken in Jervis Bay, NSW, Australia, to collect samples for physical (% mud, sorting, % carbonate), biogeochemical (chlorophyll a, sulfur, sediment metabolism, bioavailable elements) and infaunal analyses. Boosted decision tree and cokriging models generated spatially continuous data layers. Habitat maps were made from classified layers using geographic information system (GIS) overlays and were interpreted from a biophysical-process perspective. Biogeochemistry and % mud varied spatially and temporally, even in visually homogeneous sediments. Species turnover across patch types was important for diversity; the utility of habitat maps for differentiating biological communities varied across months. Diversity patterns were broadly related to reactive carbon and redox, which varied temporally. Inclusion of biogeochemical factors and time in habitat maps provides a better framework for differentiating species and interpreting biodiversity patterns than once-off studies based solely on sedimentology or video-analysis.
Additional keywords: benthic habitat mapping, beta-diversity, macroalgal detritus, marine environmental management, polychaete mounds, surrogacy.
References
Aller, J. Y., and Aller, R. C. (1986). Evidence for localised enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep-sea Research. Part I, Oceanographic Research Papers 33, 755–790.| Evidence for localised enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1GqtbY%3D&md5=0d020b90b009367b9b9279b7fdee7ea3CAS |
Anderson, T. J., Syms, C., Roberts, D. A., and Howard, D. F. (2009a). Multiscale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. Journal of Experimental Marine Biology and Ecology 379, 34–42.
| Multiscale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages.Crossref | GoogleScholarGoogle Scholar |
Anderson, T., Brooke, B., Radke, L., McArthur, M., and Hughes, M. (2009b). Mapping and characterising soft-sediment habitats and evaluating physical variables as surrogates of biodiversity in Jervis Bay, NSW. Geoscience Australia Record 2009/10. Geoscience Australia, Canberra.
Berner, R. A. (1984). Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605–615.
| Sedimentary pyrite formation: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitFeisb0%3D&md5=c21c4ec6d196fc1545ecf8e5bb8cfe88CAS |
Blott, S. J., and Pye, K. (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 1237–1248.
| Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments.Crossref | GoogleScholarGoogle Scholar |
Boudreau, B. P., Huettel, M., Forster, S., Jahnke, R. A., McLachlan, A., Middleburg, J. J., Nielsen, P., Sansone, F., Taghon, G., Van Raaphorst, W., Webster, I., Weslawski, J. M., Wiberg, P., and Sundby, P. (2001). Permeable marine sediments: overturning an old paradigm. Eos, Transactions, American Geophysical Union 82, 133–136.
Clarke, K. R., and Warwick, R. M. (2001). ‘Change in Marine Communities: an Approach to Statistical Analysis and Interpretation.’ 2nd edn. (Primer-E: Plymouth, UK.)
Cohen, A. C., Peterson, D. E., and Maddocks, R. F. (2007). Ostracoda. In ‘The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon’. (Ed. J. T. Carlton.) pp. 417–446. (University of California Press: Berkeley, CA.)
Cook, P. L. M., Wenzhöfer, F., Glud, R. N., Janssen, F., and Huettel, M. (2007). Benthic solute exchange and carbon mineralisation in two shallow subtidal sandy sediments: effect of advective pore-water exchange. Limnology and Oceanography 52, 1943–1963.
| Benthic solute exchange and carbon mineralisation in two shallow subtidal sandy sediments: effect of advective pore-water exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahsLrO&md5=08d827d7df2df6a9b1f6a3adc35ba300CAS |
CSIRO (1993). Jervis Bay Marine Ecological Studies Final Report. CSIRO Division of Fisheries, Jervis Bay, NSW.
De’ath, G., and Fabricius, K. E. (2000). Classification and regression trees: a powerful yet simple technique for ecological data analysis Ecology 81, 3178–3192.
| Classification and regression trees: a powerful yet simple technique for ecological data analysisCrossref | GoogleScholarGoogle Scholar |
Department of Environment and Heritage (2005). National marine bioregionalisation of Australia. Compilation DVD. Commonwealth of Australia, Canberra.
Eckman, J. E., Nowell, A. R. M., and Jumars, P. A. (1981). Sediment destabilisation by animal tubes. Journal of Marine Research 39, 361–374.
Ellingsen, K. E. (2001). Biodiversity of a continental shelf soft-sediment macrobenthos community. Marine Ecology Progress Series 218, 1–15.
| Biodiversity of a continental shelf soft-sediment macrobenthos community.Crossref | GoogleScholarGoogle Scholar |
Emerson, S., and Hedges, J. (2003). Sediment diagenesis and benthic fluxes. In ‘Treatise on Geochemistry’. (Eds H. D. Holland and K. K. Turekian.) pp. 293–319. (Elsevier Pergamon: Oxford.)
Emery, K. O. (1968). Relict sediments on continental shelves of the world. The American Association of Petroleum Geologists Bulletin 52, 445–464.
Ersahin, S. (2003). Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal 67, 1848–1855.
| Comparing ordinary kriging and cokriging to estimate infiltration rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCktrw%3D&md5=47657f0f5a526e1ace63ed6f8f12c662CAS |
Folk, R. L. (1980). ‘Petrology of Sedimentary Rocks.’ (Hemphill Publishing: Cedar Hill, TX.)
Franke, U., Polerecky, L., Precht, E., and Huettal, M. (2006). Wave tank study of particulate organic matter degradation in permeable sediments. Limnology and Oceanography 51, 1084–1096.
| Wave tank study of particulate organic matter degradation in permeable sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVOkur4%3D&md5=16e96f4a0f49fa1de9b6b856ff706e5dCAS |
Friedman, J. H. (1999a). Greedy function approximation: a gradient boosting machine. Department of Statistics, Stanford University, Technical Report, San Francisco, CA.
Friedman, J. H. (1999b). Stochastic gradient boosting. Department of Statistics, Stanford University, Technical Report, San Francisco, CA.
Glud, R. N. (2008). Oxygen dynamics of marine sediments. Marine Biology Research 4, 243–289.
| Oxygen dynamics of marine sediments.Crossref | GoogleScholarGoogle Scholar |
Gogina, M., Glockzin, M., and Zettler, M. L. (2010). Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 1. Causal analysis. Journal of Marine Systems 79, 112–123.
| Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 1. Causal analysis.Crossref | GoogleScholarGoogle Scholar |
Grassle, J. F., and Maciolek, N. J. (1992). Deep-sea richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist 139, 313–341.
| Deep-sea richness: regional and local diversity estimates from quantitative bottom samples.Crossref | GoogleScholarGoogle Scholar |
Gray, J. S. (2002). Species richness of marine soft sediments. Marine Ecology Progress Series 244, 285–297.
| Species richness of marine soft sediments.Crossref | GoogleScholarGoogle Scholar |
Harpole, W. S., and Tilman, D. (2007). Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793.
| Grassland species loss resulting from reduced niche dimension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVeqt7o%3D&md5=90a3d659f4ab89c8d4917330acb0d4c6CAS |
Harris, P. T., and Whiteway, T. (2009). High seas marine protected areas: benthic environmental conservation priorities from GIS analysis of global ocean biophysical data. Ocean and Coastal Management 52, 22–38.
| High seas marine protected areas: benthic environmental conservation priorities from GIS analysis of global ocean biophysical data.Crossref | GoogleScholarGoogle Scholar |
Harris, P. T., Heap, A. D., Whiteway, T., and Post, A. (2008). Application of biophysical information to support Australia’s representative protected area program. Ocean and Coastal Management 51, 701–711.
| Application of biophysical information to support Australia’s representative protected area program.Crossref | GoogleScholarGoogle Scholar |
Heap, A., Bryce, S., Ryan, D., Radke, L., Smith, C., Harris, P., and Heggie, D. (2001). Australian estuaries and coastal waterways: a geoscience perspective for improved and integrated resource management. A report to the National Land and Water Resources Audit Theme 7: Ecosystem Health. AGSO Record 2001/07, Canberra.
Holloway, P. E., Symonds, G., and Nunes Vaz, R. (1992). Observations of circulation and exchange processes in Jervis Bay, New South Wales. Australian Journal of Marine and Freshwater Research 43, 1487–1515.
| Observations of circulation and exchange processes in Jervis Bay, New South Wales.Crossref | GoogleScholarGoogle Scholar |
Huang, Z., Nichol, S., Daniell, J., Siwabessy, J., and Brooke, B. (2009). Predictive modelling of seabed sediment parameters using multibeam acoustic data: a case study on the Carnarvon Shelf, Western Australia. In ‘Proceedings of the 10th International Conference on GeoComputation’. (Eds B. G. Lees and S. W. Laffan.) pp. 114–119. (UNSW Press: Sydney.)
Huang, Z., Brooke, B., and Harris, P. T. (2011). A new approach to mapping marine benthic habitats using physical environmental data. Continental Shelf Research 31, S4–S16.
| A new approach to mapping marine benthic habitats using physical environmental data.Crossref | GoogleScholarGoogle Scholar |
Janssen, F., Huettel, M., and Witte, U. (2005). Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnology and Oceanography 50, 779–792.
| Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1ChsL8%3D&md5=6a565f5878e9ad08e979589096771caaCAS |
Kelaher, B. P., and Levington, J. S. (2003). Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages. Marine Ecology Progress Series 261, 85–97.
| Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages.Crossref | GoogleScholarGoogle Scholar |
Kirk, J. T. O. (1994). ‘Light and Photosynthesis in Aquatic Systems.’ (Cambridge University Press: Cambridge, UK.)
Kristensen, E. (2000). Organic matter diagensis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426, 1–24.
| Organic matter diagensis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVartrk%3D&md5=81dcdc99bdd9ff3916baae982eb3a5f0CAS |
Langtry, S. K., and Jacoby, C. A. (1996). Fish and decapod crustaceans inhabiting drifting algae in Jervis Bay, New South Wales. Australian Journal of Ecology 21, 264–271.
| Fish and decapod crustaceans inhabiting drifting algae in Jervis Bay, New South Wales.Crossref | GoogleScholarGoogle Scholar |
Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T., and Taylor, P. (2006). Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321, 267–281.
| Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees.Crossref | GoogleScholarGoogle Scholar |
Leecaster, M. (2003). Spatial analysis of grain size in Santa Monica Bay. Marine Environmental Research 56, 67–78.
| Spatial analysis of grain size in Santa Monica Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVKmtb8%3D&md5=44d3a2dcc37010be6d1a6bbdb0799753CAS |
Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346.
| Determination of chlorophyll and pheopigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovFOqsQ%3D%3D&md5=3d5b646f8a0872c23fab6c8980806ccdCAS |
NSW Marine Parks Authority (2010). Seabed mapping in the Solitary Islands and Jervis Bay Marine Park. NSW Marine Parks Authority, Hurstville, NSW.
McArthur, M. A., Brooke, B. P., Przeslawski, R., Ryan, D. A., Lucieer, V. L., Nichol, S., McCallum, A. W., Mellin, C., Cresswell, I. D., and Radke, L. C. (2010). On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science 88, 21–32.
| On the use of abiotic surrogates to describe marine benthic biodiversity.Crossref | GoogleScholarGoogle Scholar |
Müller, G., and Gastner, M. (1971). The ‘karonatebombe’ a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrbuch fur Mineralogie-Monatshefte 10, 466–469.
Munksby, N., Benthien, M., and Glud, R. N. (2002). Flow-induced flushing of relict tube structures in the central Skagerrak (Norway). Marine Biology 141, 939–945.
| Flow-induced flushing of relict tube structures in the central Skagerrak (Norway).Crossref | GoogleScholarGoogle Scholar |
Pittman, S. J., Costa, B. M., and Battista, T. A. (2009). Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. Journal of Coastal Research SI(53), 27–38.
| Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals.Crossref | GoogleScholarGoogle Scholar |
Poulos, H. G. (1988). ‘Marine Geotechnics.’ (Unwin Hyman: London.)
Przeslawski, R., Radke, L., and Hughes, M. (2009a). Temporal and fine-scale variation in the biogeochemistry of Jervis Bay. Geoscience Australia, Record 2009/12. Geoscience Australia, Canberra.
Przeslawski, R., Zhu, Q., and Aller, R. C. (2009b). Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics. Marine Ecology Progress Series 392, 33–42.
| Effects of abiotic stressors on infaunal burrowing and associated sediment characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaiu7rK&md5=14c0695216b7c42c405fdc0eddc02f37CAS |
Przeslawski, R., Currie, D. R., Sorokin, S. J., Ward, T. M., Althaus, F., and Williams, A. (2011). Utility of a spatial habitat classification system as a surrogate of marine benthic community structure for the Australian margin. ICES Journal of Marine Science 68, 1954–1962.
| Utility of a spatial habitat classification system as a surrogate of marine benthic community structure for the Australian margin.Crossref | GoogleScholarGoogle Scholar |
Radke, L. C., Heap, A. D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. (2011). A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 909–921.
| 1:CAS:528:DC%2BC3MXjvFeju7s%3D&md5=e3c819f44c902792b745299273b39c98CAS |
Ramey, P. A., and Bodnar, E. (2008). Selection by a deposit-feeding polychaete, Polygordius jouinae, for sands with relatively high organic content. Limnology and Oceanography 53, 1512–1520.
| Selection by a deposit-feeding polychaete, Polygordius jouinae, for sands with relatively high organic content.Crossref | GoogleScholarGoogle Scholar |
Ray, A. J., and Aller, R. C. (1985). Physical irrigation of relict burrows: implications for sediment chemistry. Marine Geology 62, 371–379.
| Physical irrigation of relict burrows: implications for sediment chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvVygtbg%3D&md5=df87a23c94d7f9c91e43160d34a202baCAS |
Scrosati, R., and Heaven, C. (2007). Spatial trends in community richness, diversity and evenness across rocky intertidal environmental stress gradients in eastern Canada. Marine Ecology Progress Series 342, 1–14.
| Spatial trends in community richness, diversity and evenness across rocky intertidal environmental stress gradients in eastern Canada.Crossref | GoogleScholarGoogle Scholar |
Seiter, K., Hensen, C., Schroter, J., and Zabel, M. (2004). Organic carbon content in surface sediments – defining regional provinces. Deep-sea Research. Part I, Oceanographic Research Papers 51, 2001–2026.
| Organic carbon content in surface sediments – defining regional provinces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtLzN&md5=65e581100e7f9c16ad0195d87760faf0CAS |
Snape, I., Scouller, R. C., Stark, S. C., Stark, J., Riddle, M. J., and Gore, D. B. (2004). Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediment. Chemosphere 57, 491–504.
| Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGgu70%3D&md5=fa7668c5a123d71d47eef6adea6beb2eCAS |
Snelgrove, P. V. R. (1999). Getting to the bottom of marine biodiversity: sedimentary habitats. Bioscience 49, 129–138.
| Getting to the bottom of marine biodiversity: sedimentary habitats.Crossref | GoogleScholarGoogle Scholar |
Sterner, R. W., and Hessen, D. O. (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics 25, 1–29.
| Algal nutrient limitation and the nutrition of aquatic herbivores.Crossref | GoogleScholarGoogle Scholar |
Stoddard, H. E., and Lowry, J. L. (2003). ‘Crustacea: Malacostraca: Peracarida: Amphipoda, Cumacea, Mysidacea.’ (CSIRO Publishing: Melbourne.)
Taylor, G. (1972). Sedimentation in Jervis Bay. Proceedings of the Linnean Society of New South Wales 96, 297–306.
Thrush, S. F., Hewitt, J. E., Herman, P. M. J., and Ysebaert, T. (2005). Multi-scale analysis of species–environment relationships. Marine Ecology Progress Series 302, 13–26.
| Multi-scale analysis of species–environment relationships.Crossref | GoogleScholarGoogle Scholar |
Todd, B. J., and Greene, H. G. (2007). Mapping the seafloor for habitat characterisation. Geological Association of Canada Special Paper 47, Geological Association of Canada, St Johns, NL, Canada.
Tselepides, A., Polychronaki, T., Marrale, D., Akoumianaki, I., Dell’Anno, A., Pusceddu, A., and Danavaro, R. (2000). Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterrranean). Progress in Oceanography 46, 311–344.
| Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterrranean).Crossref | GoogleScholarGoogle Scholar |
Verfaillie, E., Du Four, I., Van Meirvenne, M., and Van Lancker, V. (2009). Geostatistical modelling of sedimentological parameters using multi-scale terrain variables: application along the Belgian part of the North Sea. International Journal of Geographical Information Science 23, 135–150.
| Geostatistical modelling of sedimentological parameters using multi-scale terrain variables: application along the Belgian part of the North Sea.Crossref | GoogleScholarGoogle Scholar |
Wagai, R., and Mayer, L. M. (2007). Sorptive stabilisation of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta 71, 25–35.
| Sorptive stabilisation of organic matter in soils by hydrous iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlClsbvE&md5=7337013f17f439309a9db76c6c6eb985CAS |
Wilson, G. D. F. (2006). Arafura Sea biological survey. Report on RV Southern Surveyor Expedition 05/2005, 28 April–28 May 2005. Department of the Environment and Heritage, Canberra.
Wu, C., Wu, J., Luo, Y., Zhang, L., and DeGloria, S. D. (2009). Spatial estimation of soil total nitrogen using cokriging with predicted soil organic matter content. Soil Science Society of America Journal 73, 1676–1681.
| Spatial estimation of soil total nitrogen using cokriging with predicted soil organic matter content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSqu7rE&md5=ccc6c75abd8bac62a5f0830965c4d698CAS |
Zacharias, M. A., and Roff, J. C. (2000). A hierarchical ecological approach to conserving marine biodiversity. Conservation Biology 14, 1327–1334.
| A hierarchical ecological approach to conserving marine biodiversity.Crossref | GoogleScholarGoogle Scholar |
Zajac, R. N. (2008a). Macrobenthic biodiversity and sea floor landscape structure. Journal of Experimental Marine Biology and Ecology 366, 198–203.
| Macrobenthic biodiversity and sea floor landscape structure.Crossref | GoogleScholarGoogle Scholar |
Zajac, R. N. (2008b). Challenges in marine soft-sediment benthoscape ecology. Landscape Ecology 23, 7–18.
| Challenges in marine soft-sediment benthoscape ecology.Crossref | GoogleScholarGoogle Scholar |
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middleburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G. (2010). Selective preservation of organic matter in marine environments: processes and impact on the sedimentary record. Biogeosciences 7, 483–511.
| Selective preservation of organic matter in marine environments: processes and impact on the sedimentary record.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlCju78%3D&md5=ffbe6bf6630e4228d87db9ea51a9e760CAS |