Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects

Marie-José Dole-Olivier
+ Author Affiliations
- Author Affiliations

Université Lyon 1, Unité Mixte de Recherches 5023, Centre National de la Recherche Scientifique: Ecology of Fluvial Hydrosystems, F-69622 Villeurbanne, France. Email: marie-jose.olivier@univ-lyon1.fr

Marine and Freshwater Research 62(11) 1281-1302 https://doi.org/10.1071/MF11084
Submitted: 11 April 2011  Accepted: 18 July 2011   Published: 12 October 2011

Abstract

The hyporheic zone (HZ) is thought to serve multiple functions for lotic invertebrates, but its role in the persistence of benthic assemblages after disturbances (‘hyporheic refuge hypothesis’, HRH) has never been clearly demonstrated since its initial proposal in 1953. Water exchanges through the HZ appear to be crucial in determining most hyporheic processes and subsequently, in controlling directly or indirectly the distribution of hyporheic assemblages. At present, it seems that the distribution of hyporheic refugia would also be controlled by hyporheic flowpaths, explaining the non-uniform response to the HRH documented in the literature. In light of recent developments in hyporheic hydrology, it is timely to propose research directions for understanding the distribution and patchiness of hyporheic refugia. This review proposes a framework of hypotheses, based on the recognition of hyporheic flowpaths across several scales and predicting the highest refugial capacity in large-scale upwelling zones. Outcomes from this framework include the development of physical indicators measuring the ability of the HZ to protect invertebrates, the identification of river areas demonstrating the highest refuge capacity (hyporheic hotspots) and the promotion in restoration projects of suitable hydrologic exchanges for enhancing the development of hyporheic hotspots.

Additional keywords: aquatic invertebrates, drying, flooding, flow recession, hyporheic flowpaths, hyporheic refugia, spatial scales, stream geomorphology.


References

Adkins, S. C., and Winterbourn, M. J. (1999). Vertical distribution and abundance of invertebrates in two New Zealand stream beds: a freeze coring study. Hydrobiologia 400, 55–62.
Vertical distribution and abundance of invertebrates in two New Zealand stream beds: a freeze coring study.Crossref | GoogleScholarGoogle Scholar |

Amoros, C., Roux, A. L., Reygrobellet, J.-L., Bravard, J.-P., and Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers: Research Management 1, 17–36.

Anderson, J. K., Wondzell, S. M., Gooseff, M. N., and Haggerty, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H. J. Andrews experimental forest, Oregon, USA. Hydrological Processes 19, 2931–2949.
Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H. J. Andrews experimental forest, Oregon, USA.Crossref | GoogleScholarGoogle Scholar |

Angelier, E. (1953). Recherches écologiques et biogéographiques sur la faune des sables submergés. Archives de Zoologie Expérimentale et Genérale 90, 37–162.

Angradi, T. R. (1997). Hydrologic context and macroinvertebrate community response to floods in an Appalachian headwater stream. American Midland Naturalist 138, 371–386.
Hydrologic context and macroinvertebrate community response to floods in an Appalachian headwater stream.Crossref | GoogleScholarGoogle Scholar |

Angradi, T., Hood, R., and Tarter, D. (2001). Vertical, longitudinal and temporal variation in the macrobenthos of an Appalachian headwater stream system. American Midland Naturalist 146, 223–242.
Vertical, longitudinal and temporal variation in the macrobenthos of an Appalachian headwater stream system.Crossref | GoogleScholarGoogle Scholar |

Bartoszek, J. E. (2001). Comparison of hyporheic organisms in two intermittent streams to assess a local disturbance. Journal of Freshwater Ecology 16, 575–579.
Comparison of hyporheic organisms in two intermittent streams to assess a local disturbance.Crossref | GoogleScholarGoogle Scholar |

Baxter, C. V., and Hauer, F. R. (2000). Geomorphology, hyporheic exchange and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences 57, 1470–1481.
Geomorphology, hyporheic exchange and selection of spawning habitat by bull trout (Salvelinus confluentus).Crossref | GoogleScholarGoogle Scholar |

Belaidi, N., Taleb, A., and Gagneur, J. (2004). Composition and dynamics of hyporheic and surface fauna in a semi-arid stream in relation to the management of a polluted reservoir. Annales de Limnologie-International Journal of Limnology 40, 237–248.
Composition and dynamics of hyporheic and surface fauna in a semi-arid stream in relation to the management of a polluted reservoir.Crossref | GoogleScholarGoogle Scholar |

Bishop, J. E. (1973). Observations on the vertical distribution of the benthos in a Malaysian stream. Freshwater Biology 3, 147–156.
Observations on the vertical distribution of the benthos in a Malaysian stream.Crossref | GoogleScholarGoogle Scholar |

Blaschke, A. P., Steiner, K.-H., Schmalfuss, R., Gutknecht, D., and Sengschmitt, D. (2003). Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. International Review of Hydrobiology 88, 397–413.
Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria.Crossref | GoogleScholarGoogle Scholar |

Bo, T., Cucco, M., Fenoglio, S., and Malacarne, G. (2006). Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy. Hydrobiologia 568, 67–78.
Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy.Crossref | GoogleScholarGoogle Scholar |

Bo, T., Fenoglio, S., Malacarne, G., Pessino, M., and Sgariboldi, F. (2007). Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37, 186–192.
Effects of clogging on stream macroinvertebrates: an experimental approach.Crossref | GoogleScholarGoogle Scholar |

Boano, F., Camporeale, C., Revelli, R., and Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophysical Research Letters 33, L18406.
Sinuosity-driven hyporheic exchange in meandering rivers.Crossref | GoogleScholarGoogle Scholar |

Borchardt, D. (1993). Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams. Freshwater Biology 29, 221–227.
Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams.Crossref | GoogleScholarGoogle Scholar |

Borchardt, D., and Statzner, B. (1990). Ecological impact of urban stormwater runoff studied in experimental flumes: population loss by drift and availability of refugial space. Aquatic Sciences 52, 299–314.
Ecological impact of urban stormwater runoff studied in experimental flumes: population loss by drift and availability of refugial space.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J. (1989). Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Transactions of the Royal Society of South Australia 113, 23–34.

Boulton, A. J. (2000). The functional role of the hyporheos. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 27, 51–63.
| 1:CAS:528:DC%2BD3cXmtVCjs7c%3D&md5=528a8c0dced0a8abae31d6f46dc095e3CAS |

Boulton, A. J. (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48, 1173–1185.
Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52, 632–650.
Hyporheic rehabilitation in rivers: restoring vertical connectivity.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Foster, J. G. (1998). Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia. Freshwater Biology 40, 229–243.
Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Lake, P. S. (1988). Australian temporary streams: some ecological characteristics. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 23, 1380–1383.

Boulton, A. J., and Lake, P. S. (1992). The ecology of two intermittent streams in Victoria, Australia. II. Temporal changes in faunal composition. Freshwater Biology 27, 123–138.
The ecology of two intermittent streams in Victoria, Australia. II. Temporal changes in faunal composition.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Lloyd, L. N. (1992). Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regulated Rivers: Research and Management 7, 137–151.
Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Stanley, E. H. (1995). Hyporheic processes during flooding and drying in a Sonoran desert stream. II. Faunal dynamics. Archiv fuer Hydrobiologie 134, 27–52.

Boulton, A. J., and Suter, P. J. (1986). Ecology of temporary streams – an Australian perspective. In ‘Limnology in Australia’. (Eds P. De Dekker and W. D. Williams.) pp. 313–327. (Dr W. Junk Publishing: Dordercht, The Netherlands.)

Boulton, A. J., Stibbe, S. E., Grimm, N. B., and Fisher, S. G. (1991). Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran Desert stream. Freshwater Biology 26, 267–277.
Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran Desert stream.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., Valett, H. M., and Fisher, S. G. (1992). Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv fuer Hydrobiologie 125, 37–61.

Boulton, A. J., Scarsbrook, M. R., Quinn, J. M., and Burrell, G. P. (1997). Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand. New Zealand Journal of Marine and Freshwater Research 31, 609–622.
Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVGktb8%3D&md5=516bc70869ce570ed22f68f3aa11b43cCAS |

Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, M. H. (1998). The functional significance of hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29, 59–81.
The functional significance of hyporheic zone in streams and rivers.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., Dole-Olivier, M. J., and Marmonier, P. (2003). Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within-site replication and sample volume. Archiv fuer Hydrobiologie 156, 431–456.
Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within-site replication and sample volume.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., Harvey, M., and Proctor, H. (2004). Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river. Experimental & Applied Acarology 34, 149–169.
Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., Datry, T., Kasahara, T., Mutz, M., and Stanford, J. A. (2010). Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29, 26–40.

Brooks, S. S., and Boulton, A. J. (1991). Recolonisation dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Australian Journal of Marine and Freshwater Research 42, 295–308.
Recolonisation dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream.Crossref | GoogleScholarGoogle Scholar |

Brunke, M., and Gonser, T. (1997). The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37, 1–33.
The ecological significance of exchange processes between rivers and groundwater.Crossref | GoogleScholarGoogle Scholar |

Brunke, M., and Gonser, T. (1999). Hyporheic invertebrates – the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients. Journal of the North American Benthological Society 18, 344–362.
Hyporheic invertebrates – the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients.Crossref | GoogleScholarGoogle Scholar |

Buffington, J. M., and Tonina, D. (2009). Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales and rates of exchange. Geography Compass 3, 1038–1062.
Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales and rates of exchange.Crossref | GoogleScholarGoogle Scholar |

Chergui, H., Haddy, L., Markaoui, M., and Pattee, E. (1997). Impact of dead leaves leaching products on water oxygen content and on the survival of a gastropod. Acta Oecologica. International Journal of Ecology 18, 531–542.

Clarke, A., Mac Nally, R., Bond, N., and Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53, 1707–1721.
Macroinvertebrate diversity in headwater streams: a review.Crossref | GoogleScholarGoogle Scholar |

Clifford, H. G. (1966). The ecology of invertebrates in an intermittent stream. Investigations of Indiana Lakes and Streams VII, 57–97.

Clinton, S. M., Grimm, N. B., and Fisher, S. G. (1996). Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream. Journal of the North American Benthological Society 15, 700–712.
Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. J., and Hynes, H. B. N. (1970). The vertical distribution of the invertebrate fauna in the bed of a stream. Limnology and Oceanography 15, 31–40.

Collins, B. M., Sobczak, W. V., and Colburn, E. A. (2007). Subsurface flowpaths in a forested headwater stream harbor a diverse macroinvertebrate community. Wetlands 27, 319–325.
Subsurface flowpaths in a forested headwater stream harbor a diverse macroinvertebrate community.Crossref | GoogleScholarGoogle Scholar |

Cooling, M. P., and Boulton, A. J. (1993). Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream. Australian Journal of Marine and Freshwater Research 44, 411–426.
Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream.Crossref | GoogleScholarGoogle Scholar |

Covich, A. P., Crowl, T. A., and Scatena, F. N. (2003). Effects of extreme low flows on freshwater shrimps in a perennial tropical stream. Freshwater Biology 48, 1199–1206.
Effects of extreme low flows on freshwater shrimps in a perennial tropical stream.Crossref | GoogleScholarGoogle Scholar |

Creuzé des Châtelliers, M. (1991). Geomorphological processes and discontinuities in the macrodistribution of the interstitial fauna. A working hypothesis. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 24, 1609–1612.

Creuzé des Châtelliers, M., and Reygrobellet, J.-L. (1990). Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French Upper-Rhône River. Regulated Rivers: Research and Management 5, 139–158.
Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French Upper-Rhône River.Crossref | GoogleScholarGoogle Scholar |

Datry, T., and Larned, S. T. (2008). River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach. Canadian Journal of Fisheries and Aquatic Sciences 65, 1532–1544.
River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaitr3M&md5=f890c38eb2516188eefe228d8fae378bCAS |

Datry, T., Corti, R., Claret, C., and Philippe, M. (2011). Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘drying memory’. Aquatic Sciences , .
Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘drying memory’.Crossref | GoogleScholarGoogle Scholar |

Davy-Bowker, J., Sweetin, W., Wright, N., Clarke, R., and Arnott, S. (2006). The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563, 109–123.
The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles.Crossref | GoogleScholarGoogle Scholar |

del Rosario, R. B., and Resh, V. H. (2000). Invertebrates in intermittent and perennial streams: is the hyportheic zone a refuge from drying? Journal of the North American Benthological Society 19, 680–696.
Invertebrates in intermittent and perennial streams: is the hyportheic zone a refuge from drying?Crossref | GoogleScholarGoogle Scholar |

del Rosario, R. B., and Resh, V. H. (2001). Interstitial invertebrate assemblages associated with small-scale subsurface flowpaths in perennial and intermittent California streams. Archiv fuer Hydrobiologie 150, 629–640.

Delucchi, C. M. (1987). Comparison of community structure among streams with different temporal flow regimes. Canadian Journal of Zoology – Revue Canadienne de Zoologie 66, 579–586.
Comparison of community structure among streams with different temporal flow regimes.Crossref | GoogleScholarGoogle Scholar |

Delucchi, C. M. (1989). Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78, 199–207.
Movement patterns of invertebrates in temporary and permanent streams.Crossref | GoogleScholarGoogle Scholar |

Delucchi, C. M., and Peckarsky, B. L. (1989). Life history patterns of insects in an intermittent and permanent stream. Journal of the North American Benthological Society 8, 308–321.
Life history patterns of insects in an intermittent and permanent stream.Crossref | GoogleScholarGoogle Scholar |

Dole, M.-J., and Chessel, D. (1986). Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut Rhône. Annales de Limnologie. International Journal of Limnology 22, 69–81.
Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut Rhône.Crossref | GoogleScholarGoogle Scholar |

Dole-Olivier, M.-J., and Marmonier, P. (1992). Effects of spates on the vertical distribution of the interstitial community. Hydrobiologia 230, 49–61.
Effects of spates on the vertical distribution of the interstitial community.Crossref | GoogleScholarGoogle Scholar |

Dole-Olivier, M.-J., Marmonier, P., and Beffy, J.-L. (1997). Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37, 257–276.
Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium?Crossref | GoogleScholarGoogle Scholar |

Dostine, P. L., Paltridge, R. M., Humphrey, C. L., and Boulton, A. J. (1997). Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48, 633–645.
Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia).Crossref | GoogleScholarGoogle Scholar |

Elliott, A. H., and Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: theory. Water Resources Research 33, 123–136.
Transfer of nonsorbing solutes to a streambed with bed forms: theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFOmtQ%3D%3D&md5=636dba7e212396ae45a6aefc3650c06eCAS |

Fenoglio, S., Agosta, P., Bo, T., and Cucco, M. (2002). Field experiments on colonisation and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia 474, 125–130.
Field experiments on colonisation and movements of stream invertebrates in an Apennine river (Visone, NW Italy).Crossref | GoogleScholarGoogle Scholar |

Fenoglio, S., Bo, T., and Bosi, G. (2006). Deep interstitial habitat as refuge for Agabus paludosus (Fabricius) (Coleoptera: Dytiscidae) during summer droughts. Coleopterists Bulletin 60, 37–41.
Deep interstitial habitat as refuge for Agabus paludosus (Fabricius) (Coleoptera: Dytiscidae) during summer droughts.Crossref | GoogleScholarGoogle Scholar |

Fenoglio, S., Bo, T., Cucco, M., and Malacarne, G. (2007). Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). The Italian Journal of Zoology 74, 191–201.
Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy).Crossref | GoogleScholarGoogle Scholar |

Fisher, S. G. (1990). Recovery processes in lotic ecosystems: limits of successional theory. Environmental Management 14, 725–736.
Recovery processes in lotic ecosystems: limits of successional theory.Crossref | GoogleScholarGoogle Scholar |

Fowler, R. T. (2002). Relative importance of surface and subsurface movement on benthic community recovery in the Makaretu River, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 36, 459–469.
Relative importance of surface and subsurface movement on benthic community recovery in the Makaretu River, North Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Fowler, R. T. (2004). The recovery of benthic invertebrate communities following dewatering in two braided rivers. Hydrobiologia 523, 17–28.
The recovery of benthic invertebrate communities following dewatering in two braided rivers.Crossref | GoogleScholarGoogle Scholar |

Fowler, R. T., and Scarsbrook, M. R. (2002). Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. New Zealand Journal of Marine and Freshwater Research 36, 471–482.
Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers.Crossref | GoogleScholarGoogle Scholar |

Franken, R. J. M., Batten, S., Beijer, J. A. J., Gardeniers, J. J. P., Scheffer, M., et al. (2006). Effect of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. Journal of the North American Benthological Society 25, 656–663.
Effect of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus.Crossref | GoogleScholarGoogle Scholar |

Gagneur, J., and Chaoui-Boudghane, C. (1991). Sur le rôle du milieu hyporhéique pendant l’asséchement des oueds de l’ouest algérien. Stygologia 6, 77–89.

Gayraud, S., Philippe, M., and Maridet, L. (2000). The response of benthic macroinvertebrates to artificial disturbance: drift or vertical movements in the gravel bed of two subalpine streams? Archiv fuer Hydrobiologie 147, 431–446.

Giberson, D. J., and Hall, R. J. (1988). Seasonal variation in faunal distribution within the sediment of a Canadian shield stream, with emphasis on responses to spring floods. Canadian Journal of Fisheries and Aquatic Sciences 45, 1994–2002.
Seasonal variation in faunal distribution within the sediment of a Canadian shield stream, with emphasis on responses to spring floods.Crossref | GoogleScholarGoogle Scholar |

Gibert, J., Stanford, J. A., Dole-Olivier, M.-J., and Ward, J. V. (1994). Basic attributes of groundwater ecosystems and prospects for research. In ‘Groundwater Ecology’. (Eds J. Gibert, D. L. Danielopol and J. A. Stanford.) pp. 7–40. (Academic Press: San Diego.)

Gooseff, M. N., Anderson, J. K., Wondzell, S. M., LaNier, J., and Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes 20, 2443–2457.
A modelling study of hyporheic exchange pattern and the sequence, size and spacing of stream bedforms in mountain stream networks, Oregon, USA.Crossref | GoogleScholarGoogle Scholar |

Gore, J. A., and Milner, A. M. (1990). Island biogeographical theory: can it be used to predict lotic recovery rates? Environmental Management 14, 737–753.
Island biogeographical theory: can it be used to predict lotic recovery rates?Crossref | GoogleScholarGoogle Scholar |

Govedich, F., Oberlin, G., and Blinn, D. W. (1996). Comparison of channel and hyporheic invertebrate communities in a southwestern USA desert stream. Journal of Freshwater Ecology 11, 201–209.
Comparison of channel and hyporheic invertebrate communities in a southwestern USA desert stream.Crossref | GoogleScholarGoogle Scholar |

Gray, L. J., and Fisher, S. G. (1981). Postflood recolonisation pathways of macroinvertebrates in a lowland Sonoran desert stream. American Midland Naturalist 106, 249–257.
Postflood recolonisation pathways of macroinvertebrates in a lowland Sonoran desert stream.Crossref | GoogleScholarGoogle Scholar |

Griffith, M. B., and Perry, S. A. (1993). The distribution of macroinvertebrates in the hyporheic zone of two small Appalachian headwater streams. Archiv fuer Hydrobiologie 126, 373–384.

Hakenkamp, C. C., and Palmer, M. A. (1992). Problems associated with quantitative sampling of shallow groundwater invertebrates. In ‘Proceedings of the First International Conference on Ground Water Ecology’. pp. 101–110. (American Water Resource Association: Bethesda.)

Hakenkamp, C. C., Valett, H. M., and Boulton, A. J. (1993). Perspectives on the hyporheic zone: integrating hydrology and biology; concluding remarks. Journal of the North American Benthological Society 12, 94–99.
Perspectives on the hyporheic zone: integrating hydrology and biology; concluding remarks.Crossref | GoogleScholarGoogle Scholar |

Hancock, P. J. (2002). Human impacts on the stream–groundwater exchange zone. Environmental Management 29, 763–781.
Human impacts on the stream–groundwater exchange zone.Crossref | GoogleScholarGoogle Scholar |

Hancock, P. J., Boulton, A. J., and Humphreys, W. F. (2005). Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal 13, 98–111.
Aquifers and hyporheic zones: towards an ecological understanding of groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFyhsb4%3D&md5=0a655c94b083798419ab7d84ac93f94eCAS |

Hayashi, M., and Rosenberry, D. O. (2002). Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40, 309–316.
Effects of ground water exchange on the hydrology and ecology of surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFams78%3D&md5=d50c77c0afd0f0a57c8114dd90c7f365CAS |

Hester, E. T., and Doyle, M. W. (2008). In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research 44, W03417.
In-stream geomorphic structures as drivers of hyporheic exchange.Crossref | GoogleScholarGoogle Scholar |

Hester, E. T., and Gooseff, M. N. (2010). Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Science & Technology 44, 1521–1525.
Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFams7s%3D&md5=25d1c112dff95ab979a8ec542bcd53d7CAS |

Holomuzki, J. R., and Biggs, B. J. F. (2000). Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. Journal of the North American Benthological Society 19, 670–679.
Taxon-specific responses to high-flow disturbance in streams: implications for population persistence.Crossref | GoogleScholarGoogle Scholar |

Holomuzki, J. R., and Biggs, B. J. F. (2007). Physical microhabitat effects on 3-dimensional spatial variability of the hydrobiid snail, Potamopyrgus antipodarum. New Zealand Journal of Marine and Freshwater Research 41, 357–367.
Physical microhabitat effects on 3-dimensional spatial variability of the hydrobiid snail, Potamopyrgus antipodarum.Crossref | GoogleScholarGoogle Scholar |

Hose, G. C., Jones, P., and Lim, P. R. (2005). Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia. Hydrobiologia 532, 81–90.
Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hubault, E. (1927). Contribution à l’étude des invertébrés torrenticoles. Bulletin Biologique de la France et de la Belgique 9, 1–390.

Humphries, P., and Baldwin, D. S. (2003). Drought and aquatic ecosystems: an introduction. Freshwater Biology 48, 1141–1146.
Drought and aquatic ecosystems: an introduction.Crossref | GoogleScholarGoogle Scholar |

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319, 83–95.
Evidence for intensification of the global water cycle: review and synthesis.Crossref | GoogleScholarGoogle Scholar |

Hynes, H. B. N. (1974). Further studies on the distribution of stream animals within the substratum. Limnology and Oceanography 19, 92–99.
Further studies on the distribution of stream animals within the substratum.Crossref | GoogleScholarGoogle Scholar |

Hynes, H. B. N. (1983). Groundwater and stream ecology. Hydrobiologia 100, 93–99.
Groundwater and stream ecology.Crossref | GoogleScholarGoogle Scholar |

Ibisch, R. B., Seydell, I., and Borchardt, D. (2009). Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Advances in Limnology 61, 87–104.
| 1:CAS:528:DC%2BD1MXht1ems78%3D&md5=0e52ce402f915cc388bedbc6c085b645CAS |

Imbert, J. B., and Perry, J. A. (1999). Invertebrate responses to stepwise and abrupt increases in non-scouring flow: the role of refugia. Archiv fuer Hydrobiologie 146, 167–187.

James, A. B. W., and Suren, A. M. (2009). The response of invertebrates to a gradient of flow reduction – an instream channel study in a New Zealand lowland river. Freshwater Biology 54, 2225–2242.
The response of invertebrates to a gradient of flow reduction – an instream channel study in a New Zealand lowland river.Crossref | GoogleScholarGoogle Scholar |

James, A. B. W., Dewson, Z. S., and Death, R. G. (2008). Do stream macroinvertebrates use instream refugia in response to severe short-term flow reduction in New Zealand streams? Freshwater Biology 53, 1316–1334.
Do stream macroinvertebrates use instream refugia in response to severe short-term flow reduction in New Zealand streams?Crossref | GoogleScholarGoogle Scholar |

Jeffrey, K. A. F., Beamish, W. H., Ferguson, S. C., Kolton, R. J., and Mac Mahon, P. D. (1986). Effects of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM) on the macroinvertebrates within the hyporheic region of a small stream. Hydrobiologia 134, 43–51.
Effects of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM) on the macroinvertebrates within the hyporheic region of a small stream.Crossref | GoogleScholarGoogle Scholar |

Kasahara, T., and Hill, A. R. (2006). Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. Hydrological Processes 20, 4287–4305.
Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFyms74%3D&md5=73cd1724f17a1f63e562f8e6bbfbacd0CAS |

Kasahara, T., and Wondzell, S. M. (2003). Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resources Research 39, 1005.
Geomorphic controls on hyporheic exchange flow in mountain streams.Crossref | GoogleScholarGoogle Scholar |

Kasahara, T., Datry, T., Mutz, M., and Boulton, A. J. (2009). Treating causes not symptoms: restoration of surface–groundwater interactions in rivers. Marine and Freshwater Research 60, 976–981.
Treating causes not symptoms: restoration of surface–groundwater interactions in rivers.Crossref | GoogleScholarGoogle Scholar |

Koutný, J., and Rulik, M. (2007). Hyporheic biofilm particulate organic carbon in a small lowland stream (Sitka, Czech Republic): structure and distribution. International Review of Hydrobiology 92, 402–412.
Hyporheic biofilm particulate organic carbon in a small lowland stream (Sitka, Czech Republic): structure and distribution.Crossref | GoogleScholarGoogle Scholar |

Kowarc, A. V. (1992). Depth distribution and mobility of a harpacticoid copepod within the bed sediment of an alpine brook. Regulated Rivers: Research and Management 7, 58–64.

Lake, P. S. (2000). Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19, 573–592.
Disturbance, patchiness and diversity in streams.Crossref | GoogleScholarGoogle Scholar |

Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48, 1161–1172.
Ecological effects of perturbation by drought in flowing waters.Crossref | GoogleScholarGoogle Scholar |

Lancaster, J. (2008). Movement and dispersion of insects in stream channels: what role does flow play? In ‘Aquatic Insects: Challenges to Populations’. (Eds J. Lancaster and R.A. Briers.) pp. 139–157. (CAB International: Wallingford, UK.)

Lancaster, J., and Belyea, L. R. (1997). Nested hierarchies and scale-dependence of mechanisms of flow refugium use. Journal of the North American Benthological Society 16, 221–238.
Nested hierarchies and scale-dependence of mechanisms of flow refugium use.Crossref | GoogleScholarGoogle Scholar |

Lancaster, J., and Hildrew, A. G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12, 385–393.
Flow refugia and the microdistribution of lotic macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |

Leopold, L. B., Wolman, M. G., and Miller, J. P. (Eds) (1964). ‘Fluvial Processes in Geomorphology.’ (Dover Publications: San Francisco.)

LeRoy Poff, N., and Ward, J. V. (1990). Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14, 629–645.
Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Malard, F. (2003). Interstitial fauna. In ‘Ecology of a Glacial Flood Plain’. (Eds J.V. Ward and U. Uehlinger.) pp. 175–198. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Malard, F., Ward, J. V., and Robinson, C. T. (2000). An expanded perspective of the hyporheic zone. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 27, 431–437.
| 1:CAS:528:DC%2BD3cXmtVCjtr0%3D&md5=64e5a4f984cf6dae0729843c952876ddCAS |

Malard, F., Lafont, M., Burgherr, P., and Ward, J. V. (2001). A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial river. Arctic, Antarctic and Alpine Research 33, 457–466.
A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial river.Crossref | GoogleScholarGoogle Scholar |

Malard, F., Tockner, K., Dole-Olivier, M.-J., and Ward, J. V. (2002). A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47, 621–640.
A landscape perspective of surface–subsurface hydrological exchanges in river corridors.Crossref | GoogleScholarGoogle Scholar |

Malard, F., Ferreira, D., Dolédec, S., and Ward, J. V. (2003). Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river flood plain. Archiv fuer Hydrobiologie 157, 89–116.
Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river flood plain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslCju7k%3D&md5=75694f707d471b61260caa13640b14c1CAS |

Malcolm, I. A., Soulsby, C., Youngson, A. F., and Hannah, D. M. (2005). Catchment scale controls on groundwater–surface water interactions in the hyporheic zone: implications for salmon embryo survival. River Research and Applications 21, 977–989.
Catchment scale controls on groundwater–surface water interactions in the hyporheic zone: implications for salmon embryo survival.Crossref | GoogleScholarGoogle Scholar |

Marchant, R. (1988). Vertical distribution of benthic invertebrates in the bed of the Thomson River, Victoria. Australian Journal of Marine and Freshwater Research 39, 775–784.
Vertical distribution of benthic invertebrates in the bed of the Thomson River, Victoria.Crossref | GoogleScholarGoogle Scholar |

Marchant, R. (1995). Seasonal variation in the vertical distribution of hyporheic invertebrates in an Australian upland river. Archiv fuer Hydrobiologie 134, 441–457.

Marmonier, P., and Creuzé des Châtelliers, M. (1991). Effects of spates on interstitial assemblages of the Upper Rhône River. Importance of spatial heterogeneity. Hydrobiologia 210, 243–251.
Effects of spates on interstitial assemblages of the Upper Rhône River. Importance of spatial heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Marmonier, P., and Dole, M.-J. (1986). Les Amphipodes des sédiments d’un bras court-circuité du Rhône: logique de répartition et réaction aux crues. Sciences de l’Eau 5, 461–486.

Marmonier, P., Dole-Olivier, M.-J., and Creuzé des Châtelliers, M. (1992). Spatial distribution of interstitial assemblages in the floodplain of the Rhône River. Regulated Rivers: Research and Management 7, 75–82.
Spatial distribution of interstitial assemblages in the floodplain of the Rhône River.Crossref | GoogleScholarGoogle Scholar |

Matthaei, C. D., and Townsend, C. R. (2000). Inundated floodplain gravels in a stream with an unstable bed: temporary shelter or true invertebrate refugium? New Zealand Journal of Marine and Freshwater Research 34, 147–156.
Inundated floodplain gravels in a stream with an unstable bed: temporary shelter or true invertebrate refugium?Crossref | GoogleScholarGoogle Scholar |

Matthaei, C. D., Werthmüller, D., and Frutiger, A. (1997). Invertebrate recovery from a bed-moving spate: the role of drift versus movements inside or over the substratum. Archiv fuer Hydrobiologie 140, 221–235.

Matthaei, C. D., Peacock, K. A., and Townsend, C. R. (1999). Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology 42, 41–57.
Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia.Crossref | GoogleScholarGoogle Scholar |

Mc Elravy, E. P., and Resh, V. (1991). Distribution and seasonal occurrence of the hyporheic fauna in a northern California stream. Hydrobiologia 220, 233–246.

Milner, A. M., and Petts, G. E. (1994). Glacial rivers: physical habitat and ecology. Freshwater Biology 32, 295–307.
Glacial rivers: physical habitat and ecology.Crossref | GoogleScholarGoogle Scholar |

Montgomery, D. R., and Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109, 596–611.
Channel-reach morphology in mountain drainage basins.Crossref | GoogleScholarGoogle Scholar |

Murray, B. R., Zeppel, M. J. B., Hose, G. C., Eamus, D., and Licari, D. (2003). Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecological Management & Restoration 4, 110–113.
Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers.Crossref | GoogleScholarGoogle Scholar |

Negishi, J. N., Inoue, M., and Nunokawa, M. (2002). Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshwater Biology 47, 1515–1529.
Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan.Crossref | GoogleScholarGoogle Scholar |

Olsen, D. A. (2006). Macroinvertebrates of the Wairau River and the likely consequences of proposed hydroelectric development. DOC (Department Of Conservation). Research and Development Series 256, 1–25.

Olsen, D. A., and Townsend, C. R. (2003). Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology 48, 1363–1378.
Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry.Crossref | GoogleScholarGoogle Scholar |

Olsen, D. A., and Townsend, C. R. (2005). Flood effects on invertebrates, sediments and particulate organic matter in the hyoprheic zone of a gravel-bed stream. Freshwater Biology 50, 839–853.
Flood effects on invertebrates, sediments and particulate organic matter in the hyoprheic zone of a gravel-bed stream.Crossref | GoogleScholarGoogle Scholar |

Orghidan, T. (1955). Un nou domeniu de viata acvatica subterana: ‘biotopul hiporeic’. Buletin Stiintific sectia de Biologie si stiinte Agricole si sectia de Geologie si Geografie VII, 657–676.

Orghidan, T. (1959). Ein neuer lebensraum des unterirdischen Wassers, der hyporheische Biotop. Archiv fuer Hydrobiologie 55, 392–414.

Orghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology. Archiv fuer Hydrobiologie 176, 291–302.
A new habitat of subsurface waters: the hyporheic biotope.Crossref | GoogleScholarGoogle Scholar |

Packman, A. I., and Salehin, M. (2003). Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494, 291–297.
Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange.Crossref | GoogleScholarGoogle Scholar |

Palmer, M. A. (1993). Experimentation in the hyporheic zone: challenges and prospectus. Journal of the North American Benthological Society 12, 84–93.
Experimentation in the hyporheic zone: challenges and prospectus.Crossref | GoogleScholarGoogle Scholar |

Palmer, M. A., Bely, A. E., and Berg, K. E. (1992). Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89, 182–194.

Paltridge, R. M., Dostine, P. L., Humphrey, C. L., and Boulton, A. J. (1997). Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48, 633–645.
Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia).Crossref | GoogleScholarGoogle Scholar |

Paneck, K. L. J. (1991). Migrations of the macrozoobenthos within the bedsediments of the ‘Oberer Seebach’, a second order alpine brook (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 24, 1944–1947.

Poole, G. C. (2010). Stream geomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society 29, 12–25.

Poole, W., and Stewart, K. W. (1976). The vertical distribution of macrobenthos within the substratum of Brazos River, Texas. Hydrobiologia 50, 151–160.
The vertical distribution of macrobenthos within the substratum of Brazos River, Texas.Crossref | GoogleScholarGoogle Scholar |

Poole, G. C., Stanford, J. A., Running, S. W., Frissell, C. A., Woessner, W. W., et al. (2004). A patch hierarchy approach to modelling surface and subsurface hydrology in complex flood plain environments. Earth Surface Processes and Landforms 29, 1259–1274.
A patch hierarchy approach to modelling surface and subsurface hydrology in complex flood plain environments.Crossref | GoogleScholarGoogle Scholar |

Poole, G. C., Stanford, J. A., Running, S. W., and Frissell, C. A. (2006). Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. Journal of the North American Benthological Society 25, 288–303.
Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity.Crossref | GoogleScholarGoogle Scholar |

Pugsley, C. W., and Hynes, H. B. N. (1983). A modified freeze-core technique to quantify the depth distribution of fauna in stony streambeds. Canadian Journal of Fisheries and Aquatic Sciences 40, 637–643.
A modified freeze-core technique to quantify the depth distribution of fauna in stony streambeds.Crossref | GoogleScholarGoogle Scholar |

Puig, M. A., Sabater, F., and Malo, J. (1990). Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River basin (NE Spain). In ‘Mayflies and Stoneflies’. (Ed. I. C. Campbell) pp. 255–258. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Reice, S. R., Wissmar, R. C., and Naiman, R. J. (1990). Disturbance regimes, resilience and recovery of animal communities and habitats in lotic ecosystems. Environmental Management 14, 647–659.
Disturbance regimes, resilience and recovery of animal communities and habitats in lotic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., et al. (1988). The role of disturbance in stream ecology. Journal of the North American Benthological Society 7, 433–455.
The role of disturbance in stream ecology.Crossref | GoogleScholarGoogle Scholar |

Richards, C., and Bacon, K. L. (1994). Influence of fine sediment on macroinvertebrate colonisation of surface and hyporheic stream substrates. Great Basin Naturalist 54, 106–113.

Robertson, A., and Wood, P. J. (2010). Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundamental and Applied Limnology. Archiv fuer Hydrobiologie 176, 279–289.

Robertson, A. L., Lancaster, J., and Hildrew, A. G. (1995). Stream hydraulics and the distribution of microcrustacea: a role for refugia? Freshwater Biology 33, 469–484.
Stream hydraulics and the distribution of microcrustacea: a role for refugia?Crossref | GoogleScholarGoogle Scholar |

Schellenberg, E. T., Hartmann, U., Zah, R., and Meyer, E. I. (2001). Response of the epibenthic and hyporheic invertebrates to stream drying in a prealpine river. Verhandlungen – Internationale Vereinigung für Theoretische und Angewandte Limnologie 27, 3733–3737.

Schmid-Araya, J. M. (1995). Disturbance and population dynamics of rotifers in bed sediments. Hydrobiologia 313-314, 279–290.
Disturbance and population dynamics of rotifers in bed sediments.Crossref | GoogleScholarGoogle Scholar |

Schmid-Araya, J. M. (2000). Invertebrate recolonization patterns in the hyporheic zone of a gravel stream. Limnology and Oceanography 45, 1000–1005.
Invertebrate recolonization patterns in the hyporheic zone of a gravel stream.Crossref | GoogleScholarGoogle Scholar |

Schwoerbel, J. (1961). Über die lebensbedingungen und die besiedlung des hyporheischen lebensraumes. Archiv für Hydrobiologie Supplementband 25, 182–214.

Schwoerbel, J. (1962). Hyporheische besiedlung geröllführender hochgebirgsbäche mit bewegter stromsohle. Naturwissenschaften 49, 67.
Hyporheische besiedlung geröllführender hochgebirgsbäche mit bewegter stromsohle.Crossref | GoogleScholarGoogle Scholar |

Schwoerbel, J. (1964). Die ßedeutung des hyporheals für die benthische lebensgemeinschaft der fließgewässer. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie XV, 215–226.

Schwoerbel, J. (1967). Das hyporheische interstitial als grenzbiotop zwischen oberirdischem- und subterranem ökosystem und seine bedeutung für die primär-Evolution von kleinsthöhlenbewohnerm. Archiv für Hydrobiologie Supplementband 33, 1–62.

Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., and Hawkins, C. P. (1990). Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environmental Management 14, 711–724.
Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems.Crossref | GoogleScholarGoogle Scholar |

Smith, J. W. N. (2005). Groundwater-surface water interactions in the hyporheic zone. Environment Agency. Report SC030155/SR1, pp. 1–65.

Smock, L. A., Smith, L. C., Jones, J. B., and Hooper, S. M. (1994). Effects of drought and a hurricane on a coastal headwater stream. Archiv fuer Hydrobiologie 131, 25–38.

Stanford, J. A., and Gaufin, A. R. (1974). Hyporheic communities of two Montana rivers. Science 185, 700–702.
Hyporheic communities of two Montana rivers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czpvVGqsw%3D%3D&md5=a5798b3b4470d6a6855159b8d9162d2dCAS |

Stanford, J. A., and Ward, J. V. (1993). An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. Journal of the North American Benthological Society 12, 48–60.
An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor.Crossref | GoogleScholarGoogle Scholar |

Stanley, E. H., and Boulton, A. J. (1993). Hydrology and the distribution of hyporheos: perspectives from a mesic river and a desert stream. Journal of the North American Benthological Society 12, 79–83.
Hydrology and the distribution of hyporheos: perspectives from a mesic river and a desert stream.Crossref | GoogleScholarGoogle Scholar |

Stanley, E. H., Buschman, D. L., Boulton, A. J., Grimm, N. B., and Fisher, S. G. (1994). Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist 131, 288–300.
Invertebrate resistance and resilience to intermittency in a desert stream.Crossref | GoogleScholarGoogle Scholar |

Statzner, B. (2008). How views about flow adaptations of benthhic stream invertebrates changed over the last century. International Review of Hydrobiology 93, 593–605.
How views about flow adaptations of benthhic stream invertebrates changed over the last century.Crossref | GoogleScholarGoogle Scholar |

Statzner, B., Gore, J. A., and Resh, V. H. (1988). Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7, 307–360.
Hydraulic stream ecology: observed patterns and potential applications.Crossref | GoogleScholarGoogle Scholar |

Stead, T. K., Schmid-Araya, J. M., and Hildrew, A. G. (2004). The contribution of subsurface invertebrates to benthic density and biomass in a gravel stream. Archiv fur Hydrobiologie 160, 171–191.

Stead, T. K., Schmid-Araya, J. M., and Hildrew, A. G. (2005). Secondary production of a stream metazoan community: does the meiofauna make a difference? Limnology and Oceanography 50, 398–403.
Secondary production of a stream metazoan community: does the meiofauna make a difference?Crossref | GoogleScholarGoogle Scholar |

Strommer, J. L., and Smock, L. A. (1989). Vertical distribution and abundance of invertebrates within the sandy substrate of a low gradient headwater stream. Freshwater Biology 22, 263–274.

Stubbington, R., Wood, P. J., and Boulton, A. J. (2009). Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra seasonal drought. Hydrological Processes 23, 2252–2263.
Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra seasonal drought.Crossref | GoogleScholarGoogle Scholar |

Stubbington, R., Greenwood, A. M., Wood, P. J., Armitage, P. D., and Gunn, J. (2009). The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630, 299–312.
The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes.Crossref | GoogleScholarGoogle Scholar |

Stubbington, R., Wood, P., and Reid, I. (2010a). Contrasting use of hyporheic habitat by benthic invertebrates during spate and low flows. In ‘Proceedings of the 3rd International Symposium. Managing Consequences of a Changing Global Environment’. pp. 1–6. (British Hydrological Society: Newcastle University.)

Stubbington, R., Wood, P. J., Reid, I., and Gunn, J. (2010). Benthic and hyporheic invertebrate community responses to seasonal flow recession in a groundwater-dominated stream. Ecohydrology 4, 500–511.
Benthic and hyporheic invertebrate community responses to seasonal flow recession in a groundwater-dominated stream.Crossref | GoogleScholarGoogle Scholar |

Stubbington, R., Wood, P. J., Reid, I., and Gunn, J. (2011). Spatial variability in the hyporheic zone refugium of temporary streams. Aquatic Sciences , .
Spatial variability in the hyporheic zone refugium of temporary streams.Crossref | GoogleScholarGoogle Scholar |

Tabacchi, E., Decamps, H., and Thomas, A. (1993). Substrate interstices as habitat for larval Thraulus bellus (Ephemeroptera) in a temporary floodplain pond. Freshwater Biology 29, 429–439.
Substrate interstices as habitat for larval Thraulus bellus (Ephemeroptera) in a temporary floodplain pond.Crossref | GoogleScholarGoogle Scholar |

Thibodeaux, L. J., and Boyle, J. D. (1987). Bedform-generated convective transport in bottom sediment. Nature 325, 341–343.
Bedform-generated convective transport in bottom sediment.Crossref | GoogleScholarGoogle Scholar |

Thorp, J. H., Thoms, M. C., and Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22, 123–147.
The riverine ecosystem synthesis: biocomplexity in river networks across space and time.Crossref | GoogleScholarGoogle Scholar |

Tonina, D., and Buffington, J. M. (2007). Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modelling. Water Resources Research 43, W01421.
Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modelling.Crossref | GoogleScholarGoogle Scholar |

Tonina, D., and Buffington, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass 3, 1063–1086.
Hyporheic exchange in mountain rivers I: Mechanics and environmental effects.Crossref | GoogleScholarGoogle Scholar |

Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, 4795–4812.

Townsend, C. R. (1989). The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8, 36–50.
The patch dynamics concept of stream community ecology.Crossref | GoogleScholarGoogle Scholar |

Townsend, C. R., and Hildrew, A. G. (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology 31, 265–275.
Species traits in relation to a habitat templet for river systems.Crossref | GoogleScholarGoogle Scholar |

Townsend, C. R., and Riley, R. H. (1999). Assessment of river health: accounting for perturbation pathways in physical and ecological space. Freshwater Biology 41, 393–405.
Assessment of river health: accounting for perturbation pathways in physical and ecological space.Crossref | GoogleScholarGoogle Scholar |

Townsend, C. R., Doledec, S., and Scarsbrook, M. R. (1997). Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37, 367–387.
Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory.Crossref | GoogleScholarGoogle Scholar |

Townsend, C. R., Scarsbrook, M. R., and Doledec, S. (1997). The intermediate disturbance hypothesis, refugia and biodiversity in streams. Limnology and Oceanography 42, 938–949.
The intermediate disturbance hypothesis, refugia and biodiversity in streams.Crossref | GoogleScholarGoogle Scholar |

Triska, F., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and Bencala, K. E. (1989). Retention and transport of nutrient in a third-order stream in Northwestern California: hyporheic processes. Ecology 70, 1893–1905.
Retention and transport of nutrient in a third-order stream in Northwestern California: hyporheic processes.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The ‘river continuum concept’. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The ‘river continuum concept’.Crossref | GoogleScholarGoogle Scholar |

Vaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin 66, 479–489.

Wagner, F. H., and Feio, M. J. (2001). Abundance versus activity of invertebrates in the hyporheic zone – two hypotheses. In ‘Groundwater Ecology. A Tool for Management of Water Resources’. (Eds C. Griebler, D. L. Danielopol, J. Gibert, H. P. Nachtnebel and J. Notenboom) pp. 363–367 (Official publications of the European Communities: Luxembourg.)

Wagner, R., Schmidt, H. H., and Marxsen, J. (1993). The hyporheic habitat of the Breitenbach, spatial structure and physicochemical conditions as a basis for benthic life. Limnologica 23, 285–294.
| 1:CAS:528:DyaK2cXks1CrtLg%3D&md5=cd4b55bc82fa829ecb8daa969f4235aaCAS |

Wallace, J. B. (1990). Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management 14, 605–620.
Recovery of lotic macroinvertebrate communities from disturbance.Crossref | GoogleScholarGoogle Scholar |

Wallace, R. R., West, A. S., Downe, A. E. R., and Hynes, H. B. N. (1973). The effects of experimental blackfly (Diptera; Simuliiidae) larviciding with abate, dursban and methoxychlor on stream invertebrates. Canadian Entomologist 105, 817–831.
The effects of experimental blackfly (Diptera; Simuliiidae) larviciding with abate, dursban and methoxychlor on stream invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsVegtbk%3D&md5=cf2a96d11dc6805ba2e07ff5cd9afc6cCAS |

Ward, J. V. (1994). The structure and dynamics of lotic ecosystems, In ‘Limnology Now: a Paradigm of Planetary Problems’. (Ed. R. Margalef.) pp. 195–218. (Elsevier Science: Amsterdam.)

White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12, 61–69.
Perspectives on defining and delineating hyporheic zones.Crossref | GoogleScholarGoogle Scholar |

Whitman, R. L., and Clark, W. J. (1984). Ecological studies of the sand-dwelling community of an East Texas stream. Freshwater Invertebrate Biology 3, 59–79.
Ecological studies of the sand-dwelling community of an East Texas stream.Crossref | GoogleScholarGoogle Scholar |

Williams, D. D. (1977). Movements of benthos during the recolonisation of temporary streams. Oikos 29, 306–312.
Movements of benthos during the recolonisation of temporary streams.Crossref | GoogleScholarGoogle Scholar |

Williams, D. D. (1981). Migrations and distributions of stream benthos. In ‘Perspectives in Running Water Ecology’. (Eds M. A. Lock and D. D. Williams.) pp. 155–208. (Plenum Publishers: New York.)

Williams, D. D. (1984). The hyporheic zone as a habitat for aquatic insects and associated arthropods. In ‘The Ecology of Aquatic Insects’. (Eds V. H. Resh and D. M. Rosenberg.) pp. 430–455. (Praeger Publishers: New York.)

Williams, D. D. (Ed.) (1987). ‘The Ecology of Temporary Waters.’ (Croom-Helm: London.)

Williams, D. D., and Hynes, H. B. N. (1974). The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4, 233–256.
The occurrence of benthos deep in the substratum of a stream.Crossref | GoogleScholarGoogle Scholar |

Williams, D. D., and Hynes, H. B. N. (1976). The recolonization mechanisms of stream benthos. Oikos 27, 265–272.
The recolonization mechanisms of stream benthos.Crossref | GoogleScholarGoogle Scholar |

Wondzell, S. M. (2006). Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrological Processes 20, 267–287.
Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.Crossref | GoogleScholarGoogle Scholar |

Wondzell, S. M., and Swanson, F. J. (1999). Floods, channel change and the hyporheic zone. Water Resources Research 35, 555–567.
Floods, channel change and the hyporheic zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsF2msLY%3D&md5=180943529bd08dd1cdafc91e8072f112CAS |

Wood, P. J., Boulton, A. J., Little, S., and Stubbington, R. (2010). Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology 176, 377–390.
Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions?Crossref | GoogleScholarGoogle Scholar |

Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W., and Stone, S. (2006). Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters 33, L07402.
Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography.Crossref | GoogleScholarGoogle Scholar |

Wroblicky, G. J., Campana, M. E., Valett, H. M., and Dahm, C. N. (1998). Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resources Research 34, 317–328.
Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems.Crossref | GoogleScholarGoogle Scholar |

Yount, J. D., and Niemi, G. J. (1990). Recovery of lotic communities and ecosystems from disturbance – a narrative review of case studies. Environmental Management 14, 547–569.
Recovery of lotic communities and ecosystems from disturbance – a narrative review of case studies.Crossref | GoogleScholarGoogle Scholar |