Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Sedimentological characteristics of key sea turtle rookeries: potential implications under projected climate change

M. M. P. B. Fuentes A C , J. L. Dawson A , S. G. Smithers A , M. Hamann A and C. J. Limpus B
+ Author Affiliations
- Author Affiliations

A School of Earth and Environmental Sciences, James Cook University, Douglas, Qld 4811, Australia.

B Queensland Environmental Protection Agency, Brisbane, Qld 4000, Australia.

C Corresponding author. Email: mariana.fuentes@jcu.edu.au

Marine and Freshwater Research 61(4) 464-473 https://doi.org/10.1071/MF09142
Submitted: 16 June 2009  Accepted: 16 September 2009   Published: 27 April 2010

Abstract

Sea turtles rely on reef islands for key parts of their reproductive cycle and require specific sediment characteristics to incubate their eggs and dig their nests. However, little is known about the sedimentological characteristics of sea turtle rookeries, how these sediment characteristics affect the vulnerability of rookeries to climate change, and the ecological implications of different sediment or altered sediment characteristics to sea turtles. Therefore, we described the sediment and identified the reef-building organisms of the seven most important rookeries used by the northern Great Barrier Reef (nGBR) green turtle population. We then reviewed the literature on the vulnerability of each identified reef-building organism to climate change and how various sediment characteristics ecologically affect sea turtles. Sediments from the studied rookeries are predominantly composed of well-sorted medium-grained to coarse-grained sands and are either dominated by Foraminifera, molluscs or both. Dissimilarities in the contemporary sedimentology of the rookeries suggest that each may respond differently to projected climate change. Potential ecological impacts from climate change include: (1) changes in nesting and hatchling emergence success and (2) reduction of optimal nesting habitat. Each of these factors will decrease the annual reproductive output of sea turtles and thus have significant conservation ramifications.

Additional keywords: Australia, carbonate sediments, coastal morphology, global warming, Great Barrier Reef, islands, marine turtles, nesting grounds, ocean acidification.


Acknowledgements

This work was supported and funded by the Queensland Parks and Wildlife Service (QPWS), the Australian Government's Marine and Tropical Sciences Research Facility and the Great Barrier Reef Marine Park Authority. We thank the traditional owners of the field sites for allowing access and granting permission to work on their land. We thank the staff and volunteers of the QPWS, Earthwatch and Erub community for sand sample collection. Special thanks go to Moses Wailu, Ian Bell and Kenny Bedford for facilitating work at Dowar Island, Milman Island and Bramble Cay, respectively. We are also thankful for the comments provided by Christopher T. Perry on an earlier version of this manuscript and three anonymous referees. Field work complies with the current laws of Australia and all permits necessary for the project were obtained (QPWS permit number WISPO4316207).


References

Andersson, A. , Bates, N. , and Mackenzie, F. (2007). Dissolution of carbonate sediments under rising p CO2 and ocean acidification: observations from Devil's Hole, Bermuda. Aquatic Geochemistry 13, 237–264.
Crossref | GoogleScholarGoogle Scholar | Bijma J., Spero H. J., and Lea D. W. (1999). Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results). In ‘Use of Proxies in Paleoceanography: Examples from the South Atlantic’. (Eds G. Fischer and G. Wefer.) pp. 489–512. (Springer-Verlag: New York.)

Borowitzka, M. A. , and Larkum, A. W. D. (1976). Calcification in the green alga Halimeda. Journal of Experimental Botany 27, 879–893.
Crossref | GoogleScholarGoogle Scholar | Breeman A. M. (1990). Expected effects of changing seawater temperatures on the geographic distribution on seaweed species. In ‘Expected Effects of Climate Change on Marine Coastal Ecosystems’. (Eds J. J. Beukema, W. J. Wolff and M. Brouns.) pp. 69–76. (Kluwer Academic Publishers: The Netherlands.)

Chen, H. C. , Cheng, I. J. , and Hong, E. (2007). The influence of the beach environment on the digging success and nest site distribution of the green turtle, Chelonia mydas, on Wan-an Island, Penghu Archipelago, Taiwan. Journal of Coastal Research 23, 1277–1286.
Crossref | GoogleScholarGoogle Scholar | Diaz-Pulido G., McCook L. J., Larkum A. W. D., Lotze H. K., Raven J. A., et al. (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. Johnson and P. A. Marshall.) pp. 154–192. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Australia.)

Dobbs, K. A. , Miller, J. D. , Limpus, C. J. , and Landry, A. M. J. (1999). Hawksbill turtle, Eretmochelys imbricata, nesting at Milman Island, northern Great Barrier Reef, Australia. Chelonian Conservation and Biology 3, 344–361.
Fletemeyer J. R. (1980). ‘Sea Turtle Monitoring Project, 1980 Report. Cooperation Sea Turtle Monitoring Program.’ (Nova University and Broward County Environmental Quality Control Board: Fort Lauderdale, Florida.)

Folk, R. L. , and Robles, R. (1964). Carbonate sands of Isla Perez, Alacran reef complex, Yucatan. The Journal of Geology 72, 255–292.
Crossref | GoogleScholarGoogle Scholar | Fuentes M. M. P. B., Limpus C. J., Hamann M., and Dawson J. (2010). Potential impacts of projected sea-level rise to sea turtle rookeries. Aquatic Conservation: Marine & Freshwater Ecosystems, in press

Galehouse J. S. (1971). Sedimentation analysis. In ‘Procedures in Sedimentary Petrology’. (Ed. R. E. Carver.) pp. 69–94. (John Wiley & Sons: New York.)

Gazeau, F. , Quiblier, C. , Jansen, J. M. , Gattuso, J. P. , and Middelburg, J. J. , et al. (2007). Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34, L07603.
Crossref | GoogleScholarGoogle Scholar | Graham J. (1988). Collection and analysis of field data. In ‘Techniques in Sedimentology’. (Ed. M. E. Tucker.) pp. 5–62. (Blackwell Scientific: Oxford.)

Guinotte J. M., and Fabry V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. In ‘The Year in Ecology and Conservation Biology 2008’. (Eds R. S. Ostfeld and W. H Schlesinger.) pp. 320–342. (Annals of the New York Academy of Sciences: New York.)

Halfar, J. , Godinez-Orta, L. , Valdez-Holguin, J. , and Borges, J. M. (2004). Nutrient and temperature controls on modern carbonate production: An example from the Gulf of California, Mexico. Geological Society of America 32, 213–216.
Hopley D. (1982). ‘Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs.’ (Wiley Interscience: New York.)

Hopley D., Smithers S. G., and Parnell K. E. (2007). ‘The Geomorphology of the Great Barrier Reef: Development, Diversity and Change.’ (Cambridge University Press: Cambridge.)

Hutchings P., Ahyong S., Byrne M., Przeslawski R., and Worheide G. (2007). Vulnerability of benthic invertebrates of the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. E. Johnson and P. A. Marshall.) pp. 309–356. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Australia.)

Ingram R. L. (1971). Sieve analysis. In ‘Procedures in Sedimentary Petrology’. (Ed. R. E. Carver.) pp. 49–67. (John Wiley & Sons: New York.)

IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007 — the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge.

Kench, P. , and Cowell, P. (2001). The morphological response of previous atoll next term islands to sea-level rise. Part 2. Application of the modified Shoreline Translation Model. Journal of Coastal Research 34, 645–656.
Kleypas J. A., Feely R. A., Fabry V. J., Langdon C., Sabine C. L., et al. (2006). Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, Florida, sponsored by NSF, NOAA, and the U.S. Geological Survey. Available from http://www.ucar.edu/communications/Final_acidification.pdf

Kuffner, I. B. , Andersson, A. J. , Jokiel, P. L. , Rodgers, K. S. , and Mackenzie, F. T. (2007). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1, 114–117.
Crossref | GoogleScholarGoogle Scholar | Meehl G. A., Stocker T. F., Collins W. D., Friedlingstein P., Gaye A. T., et al. (2007). Global climate projections. In ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S. D. Solomon, M. Qin, Z. Manning, M. Chen, K. B. Marquis, M. Averyt, H. L. Tignor and H. L. Miller.) pp. 747–846. (Cambridge University Press: Cambridge.)

Miller J. D. (1985). Embryology of marine turtles. In ‘Biology of the Reptilia Vol. 14’. (Eds C. Gans, F. Billett and P. F. A. Maderson.) pp. 271–328. (Wiley Interscience: New York.)

Milliman J. D. (1974). ‘Recent Sedimentary Carbonates.’ (Springer-Verlag: Berlin.)

Mimura, N. (1999). Vulnerability of island countries in the South Pacific to sea level rise and climate change. Climate Research 12, 137–143.
Crossref | GoogleScholarGoogle Scholar | Mortimer J. A. (1981). Reproductive ecology of the green turtle, Chelonia mydas, at Ascension Island. PhD Thesis, University of Florida.

Mortimer, J. A. (1990). The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia 1990, 802–817.
Crossref | GoogleScholarGoogle Scholar | Scoffin T. P. (1987). ‘An Introduction to Carbonate Sediments and Rocks.’ (Chapman & Hall: New York.)

Shirayama, Y. , and Thornton, H. (2005). Effect of increased atmospheric CO2 on shallow water marine benthos. Journal of Geophysical Research 110,
Crossref | GoogleScholarGoogle Scholar | Smithers S. G., Harvey N., Hopley D., and Woodroffe C. D. (2007). Vulnerability of geomorphological features in the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. Johnson and P. A. Marshall.) pp. 668–716. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Australia.)

Speakman, J. R. , Hays, G. C. , and Lindblad, E. (1998). Thermal conductivity of sand and its effect on the temperature of loggerhead sea turtle (Caretta caretta) nests. Journal of the Marine Biological Association of the United Kingdom 78, 1337–1352.
Crossref | GoogleScholarGoogle Scholar | Stoddart D. R. (1978). Mechanical analysis of reef sediments. In ‘Coral Reefs: Research Methods’. (Eds D. R. Stoddart and R. E. Johannes.) pp. 53–66. (UNESCO: Paris.)

Taylor, T. (1924). Movement of sand cays. Queensland Geographical Journal 39, 38–39.


Yalçin-Ozdilek, S. , Ozdilek, H. G. , and Ozaner, F. S. (2007). Possible influence of beach sand characteristics on green turtle nesting activity on Samanda Beach, Turkey. Journal of Coastal Research 23, 1379–1390.
Crossref | GoogleScholarGoogle Scholar |

Yamano, H. , Miyajima, T. , and Hoike, I. (2000). Importance of Foraminifera for the formation and maintenance of a coral sand cay: Green Island, Australia. Coral Reefs 19, 51–58.
Crossref | GoogleScholarGoogle Scholar |

Zeigler, J. M. , and Whitne, G. G. (1960). Woods Hole rapid sediment analyzer. Journal of Sedimentary Research 30, 490–495.