Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Calibration of a rapid non-lethal method to measure energetic status of a freshwater fish (Murray cod, Maccullochella peelii peelii)

Nick S. Whiterod
+ Author Affiliations
- Author Affiliations

Murray–Darling Freshwater Research Centre, PO Box 991, Wodonga, Vic. 3690, Australia and Charles Sturt University, School of Environmental Sciences, PO Box 789, Albury, NSW 2640, Australia. Email: N.Whiterod@latrobe.edu.au

Marine and Freshwater Research 61(5) 527-531 https://doi.org/10.1071/MF09105
Submitted: 12 May 2009  Accepted: 12 October 2009   Published: 28 May 2010

Abstract

The energetic status of freshwater fish provides a dynamic measure of their energy balance in response to the environment they occupy. Commercially available microwave technology (the ‘energy meter’) provides a rapid, non-lethal and inexpensive alternative to traditional laboratory methods for the determination of energy density. The energy meter requires species-specific confirmation of the water–lipid relationship, and comparison of energy meter readings with laboratory-determined estimates of the whole-body energy density. I explored the applicability of the energy meter to the threatened Murray cod (Maccullochella peelii peelii), using both hatchery and wild individuals. Although hatchery and wild fish varied in lipid content, water content and energy density, the parameter comparisons necessary to calibrate the energy meter were statistically consistent between both groups. Subsequently, a robust combined water–lipid relationship was identified for Murray cod, where energy density was strongly related to both water content and lipid content. Average energy meter readings were capable of providing a rapid, non-lethal and accurate assessment of Murray cod energy density. The successful calibration highlights the applicability of the energy meter to provide a dynamic measure of the energetic status of threatened freshwater fish throughout the world.

Keywords: bioenergetics modelling, energetic status, energy meter, Murray cod, proximate composition.


Acknowledgements

This study forms part of a PhD funded by the Mallee Catchment Management Authority (Mallee CMA), with support from the Murray–Darling Freshwater Research Centre (MDFRC). I thank Simon Noble (Brimin Lodge) and Peter van Lierop (Alexandra Fish Farm) for supplying hatchery fish, and Dave Pasztaleniec and Joy Sloan (DPI Victoria), and Sylvia Zukowski (MDFRC) for assistance with the sampling of wild fish. Thanks go to Neil Menz (National Measurement Institute) for proximate composition analysis and Brett Ingram (Victoria DPI), Giovanni Turchini (Deakin University) and David Fulton (Distell) for helpful advice. The manuscript was improved by valuable comment from Shaun Meredith (MDFRC), Paul Humphries (CSU), Colin Whiterod, John Koehn (Arthur Rylah Institute for Environmental Research), the editor, and two anonymous reviewers. Both field (Latrobe University, AEC07-22-M Research Permit and Victorian Fisheries Collection Permit, RP922) and laboratory (CSU, #08/093 Ethics Permit) components of this study were conducted under the conditions and requirements of relevant research permits.


References

AOAC (2006). ‘Official Methods of Analysis of the Association of Official Analytical Chemists.’ (Association of Official Analytical Chemists: Gaithersburg, MD.)

Berg, O. K. , and Bremset, G. (1998). Seasonal changes in the body composition of young riverine Atlantic salmon and brown trout. Journal of Fish Biology 52, 1272–1288.
Crossref | GoogleScholarGoogle Scholar | Brett J. R., and Groves T. D. D. (1979). Physiological energetics. In ‘Fish Physiology’. (Eds W. S. Hoar, D. J. Randall and J. R. Brett.) pp. 279–352. (Academic Press: New York.)

Broekhuizen, N. W. , Gurney, S. C. , Jones, A. , and Bryant, A. D. (1994). Modelling compensatory growth. Functional Ecology 8, 770–782.
Crossref | GoogleScholarGoogle Scholar | Colt J., and Shearer K. D. (2001). ‘Evaluation of the Use of the Torry Fish Fatmeter to Nonlethally Estimate Lipid in Adult Salmon.’ (Army Corps of Engineers: Seattle, WA.)

Cooke, S. J. , Hinch, S. G. , Crossin, G. T. , Patterson, D. A. , English, K. K. , Healey, M. C. , Macdonald, J. S. , Shrimpton, J. M. , Van Der Kraak, G. , and Farrell, A. P. (2006). Mechanistic basis of individual mortality in Pacific salmon during spawning migrations. Ecology 87, 1575–1586.
Crossref | GoogleScholarGoogle Scholar | PubMed | Distell (2007). ‘Distell Fish Fatmeter (Model FM-992), User and Technical Manual v.2.5.’ (Distell Inc.: West Lothian, Scotland.)

Finstad, A. G. , Ugedal, O. , Forseth, T. , and Næsje, T. F. (2004). Energy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 61, 2358–2368.
Crossref | GoogleScholarGoogle Scholar | Lintermans M. (2007). ‘Fishes of the Murray–Darling Basin: An Introductory Guide.’ (Murray–Darling Basin Commission: Canberra.)

Niimi, A. (1972). Changes in the proximate body composition of largemouth bass (Micropterus salmoides) with starvation. Journal of Zoology 50, 815–819.
CAS |

Palmeri, G. , Turchini, G. M. , and De Silva, S. S. (2007). Lipid characterisation and distribution in the fillet of the farmed Australian native fish, Murray cod (Maccullochella peelii peelii). Food Chemistry 102, 796–807.
Crossref | GoogleScholarGoogle Scholar | CAS |

Pothoven, S. A. , Ludsin, S. A. , Höök, T. O. , Fanslow, D. L. , and Mason, D. M. (2008). Reliability of bioelectrical impedance analysis for estimating whole-fish energy density and percent lipids. Transactions of the American Fisheries Society 137, 1519–1529.
Crossref | GoogleScholarGoogle Scholar |

Romvári, R. , Hancz, C. S. , Petrási, Z. S. , Molnár, T. , and Horn, P. (2002). Non-invasive measurement of fillet composition of four freshwater fish species by computer tomography. Aquaculture International 10, 231–240.
Crossref | GoogleScholarGoogle Scholar |

Stewart, D. J. , and Binkowski, F. P. (1986). Dynamics of consumption and food conversion by Lake Michigan alewives: an energetics-modelling synthesis. Transactions of the American Fisheries Society 115, 643–661.
Crossref | GoogleScholarGoogle Scholar |

Veliyulin, E. , van der Zwaag, C. , Burk, W. , and Erikson, U. (2005). In vivo determination of fat content in Atlantic salmon (Salmo salar) with a mobile NMR spectrometer. Journal of the Science of Food and Agriculture 85, 1299–1304.
Crossref | GoogleScholarGoogle Scholar | CAS |

Wuenschel, M. J. , Jugovich, A. R. , and Hare, J. A. (2006). Estimating the energy density of fish: the importance of ontogeny. Transactions of the American Fisheries Society 135, 379–385.
Crossref | GoogleScholarGoogle Scholar |

Young, J. L. , Cooke, S. J. , Hinch, S. G. , Crossin, G. T. , and Patterson, D. A. , et al. (2006). Physiological and energetic correlates of en route mortality for abnormally early migrating adult sockeye salmon in the Thompson River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 63, 1067–1077.
Crossref | GoogleScholarGoogle Scholar |