Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Coastal upwelling may overwhelm the effect of sewage discharges in rocky intertidal communities of the Peruvian coast

Fausto N. Firstater A B E , Fernando J. Hidalgo A B , Betina J. Lomovasky A B , Juan Tarazona C , Georgina Flores D and Oscar O. Iribarne A B
+ Author Affiliations
- Author Affiliations

A Laboratorio de Ecología, Departamento de Biología, FCEyN, Universidad Nacional de Mar del Plata, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

C Departamento de Biología, Universidad Nacional Mayor de San Marcos, Apartado 1898, Lima 100, Perú.

D Dirección de Investigaciones Oceanográficas – Unidad de Investigaciones en Oceanografía Química, Instituto del Mar del Perú, PO Box 22, Callao, Perú.

E Corresponding author. Email: firstate@mdp.edu.ar

Marine and Freshwater Research 61(3) 309-319 https://doi.org/10.1071/MF09102
Submitted: 7 May 2009  Accepted: 21 August 2009   Published: 29 March 2010

Abstract

In coastal productive environments, such as upwelling systems, sewage effluents might represent an important input of nutrients affecting intertidal community development and structure. Using descriptive and experimental approaches, the community spatial variation and early succession in relation to a point-source effluent discharge in a rocky intertidal of an upwelling affected area (Ancón Bay, Peru) was analysed. The relative contribution of herbivory to the observed patterns was also analysed. Dissolved nutrient concentrations, macroalgal isotopic signatures and N content revealed a significant input of nutrients at the outfall, although this contribution was not reflected in the algal assemblage, but in higher abundances of mytilids, ophiuroids and limpets. Cover of most sessile organisms (biofilm, Ulva spp., mytilids and barnacles) varied among sites throughout early succession, and grazers only enhanced the cover of the red algae Gelidium spp. Differences in succession patterns could not be attributed to discharge effects. The results of this study suggest that the community development is bottom-up controlled in the entire bay, which is likely to be due to the upwelling that operates at larger temporal and spatial scales. If so, nutrient input derived from coastal upwelling may sometimes overwhelm the role of anthropogenic nutrient loadings in shaping intertidal communities.

Additional keywords: bottom-up, community structure, Peru, succession.


Acknowledgements

We thank Elmer Ramos for helping with logistics and laboratory resources, Percy Gallegos and Carlos Paredes for collaborating in species identification, Patricia Gamero and Michelle Graco for sampling and remarks. Comments by Drs Ivan Valiela and Hsing-Juh Lin were helpful in data interpretation. We also thank two anonymous reviewers for their comments that greatly improved this manuscript. This study was conducted and financed in the framework of the EU-project CENSOR (Climate variability and El Niño Southern Oscillation: Implications for natural resources and management, contract 511071) and is CENSOR publication No. 0353.


References

Armitage, A. R. , Frankovich, T. A. , and Fourqurean, J. W. (2006). Variable responses within epiphytic and benthic microalgal communities to nutrient enrichment. Hydrobiologia 569, 423–435.
Crossref | GoogleScholarGoogle Scholar | Clarke K. R., and Warwick R. M. (2001). ‘Change in Marine Communities: An Approach to Statistical Analysis and Interpretation.’ (PRIMER-E: Plymouth.)

Codispoti, L. A. , and Packard, T. T. (1980). On the denitrification rate in the Eastern Tropical South Pacific. Journal of Marine Research 38, 453–477.
Lajtha K., and Michener R. H. (1994). ‘Stable Isotopes in Ecology and Environmental Science.’ (Blackwell: Oxford.)

Lin, H. J. , Wu, C. Y. , Kao, S. J. , Kao, W. Y. , and Meng, P. J. (2007). Mapping anthropogenic nitrogen through point sources in coral reefs using δ15N in macroalgae. Marine Ecology Progress Series 335, 95–109.
Crossref | GoogleScholarGoogle Scholar | Servicio Nacional de Meteorología e Hidrografía del Perú (2009). ‘Datos Históricos.’ Available at http://www.senamhi.gob.pe/ [Accessed 24 July 2009].

Smith, S. D. A. (1996). The effects of domestic sewage effluent on marine communities at Coffs Harbour, New South Wales, Australia. Marine Pollution Bulletin 33, 309–316.
Crossref | GoogleScholarGoogle Scholar | Strickland J. D. H., and Parsons T. R. (1972). ‘A Practical Handbook of Seawater Analysis.’ 2nd edn. (Bulletin of Fisheries Research Board of Canada: Ottawa.)

Tarazona, J. , Salzwedel, H. , and Arntz, W. E. (1988). Positive effects of “El Niño” on macrozoobenthos inhabiting hypoxic areas of the Peruvian upwelling system. Oecologia 76, 184–190.
Crossref | GoogleScholarGoogle Scholar | Underwood A. J. (1997). ‘Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance.’ (Cambridge University Press: Cambridge.)

Valiela I. (1995). ‘Marine Ecological Processes.’ (Springer Verlag: New York.)

Valiela I. (2006). ‘Global Coastal Change.’ (Blackwell: Australia.)

Valiela, I. , McClelland, J. , Hauxwell, J. , Behr, P. J. , and Hersh, D. , et al. (1997). Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42, 1105–1118.
Zar J. H. (1999). ‘Biostatistical Analysis.’ (Prentice Hall: New Jersey.)