Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Population and family structure of brown trout, Salmo trutta, in a Mediterranean stream

Manuel Vera A B , Nuria Sanz A E , Michael M. Hansen C , Ana Almodóvar D and José-Luis García-Marín A
+ Author Affiliations
- Author Affiliations

A Laboratori d’Ictiologia Genètica, Universitat de Girona, Campus Montilivi, E-17071 Girona, Spain.

B Current address: Departamento de Xenética, Facultad Veterinaria, Campus Lugo USC, E-27002-Lugo, Spain.

C DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark.

D Departamento de Zoología, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, José Antonio Novais 2, Ciudad Universitaria, Spain.

E Corresponding author. Email: nuria.sanz@udg.edu

Marine and Freshwater Research 61(6) 672-681 https://doi.org/10.1071/MF09098
Submitted: 28 August 2009  Accepted: 11 December 2009   Published: 25 June 2010

Abstract

The physical arrangement of closely related individuals is expected to significantly influence the pattern of population genetic structure. For example, if related individuals are non-randomly distributed and included in samples, this may lead to exaggerated conclusions about genetic differentiation. In the present study, we compared population structure v. family relationships of brown trout (Salmo trutta L.) along a Mediterranean stream (Pyrenees) by using eight microsatellite loci. Results showed low levels of genetic (FST) differentiation between collections in a 6.5-km transect along the stream, and a significant correlation between genetic and geographical distance matrices, indicating a weak population structure associated with spatial distribution. Our data also indicated that geographical proximity of related individuals in the youngest (0+, 1+) cohorts probably was associated with limited dispersal of younger brown trout from spawning redds. Family relationships provided evidence, however, for movement of adult trout over distances of a few kilometres that probably contributed to the low observed differentiation. Dispersal of adult Mediterranean trout contrasts with the clustering of related older trout observed for some north European rivers and could be related to the reduced productivity in southern stream basins.

Additional keywords: family reconstruction, fish movement, isolation by distance.


Acknowledgements

This research meets the objectives of the REN-2003-05931/GLO project of the Spanish MCYT. The authors thank K. L. D. Mensberg and D. Meldrup for their technical support. Microsatellite loci were genotyped at DTU Aqua during M. Vera’s visit. M. Vera was supported by a fellowship of the Spanish MCYT. We thank Professor Boulton, Dr Mather and an anonymous referee for many useful comments and suggestions on the paper. This work is in accordance with all ethical guidelines and legal requirements of Spain. We thank DGMN of the Autonomous Government of Catalonia for sampling permission.


References

Bentzen, P. , Olsen, J. B. , McLean, J. E. , Seamons, T. R. , and Quinn, T. P. (2001). Kinship analysis of Pacific salmon: insights into mating, homing, and timing of reproduction. The Journal of Heredity 92, 127–136.
Crossref | GoogleScholarGoogle Scholar | PubMed | Elliott J. M. (1994). ‘Quantitative Ecology and the Brown Trout.’ (Oxford University Press: Oxford, UK.)

Estoup, A. , Presa, P. , Krieg, F. , Vaiman, D. , and Guyomard, R. (1993). (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71, 488–496.
Crossref | GoogleScholarGoogle Scholar | PubMed | Rocaspana R., Cia I., Arévalo J. A., Escue A., Pou J., and Pou C. (2006). ‘Estudi de la Mida de la Truita en Zones d’Alta Muntanya de Catalunya.’ (Direcció General del Medi Natural, Departament de Medi Ambient i Habitatge, Generalitat de Catalunya: Spain.)

Rohlf F. J. (1993). ‘NTSYSpc 2.1. Numerical Taxonomy and Multivariate Analysis System.’ (Setauket: New York.)

Ruzzante, D. E. , Hansen, M. M. , and Meldrup, D. (2001). Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Molecular Ecology 10, 2107–2128.
Crossref | GoogleScholarGoogle Scholar | PubMed | Schneider S., Roessli D., and Excoffier L. (2000). ‘Arlequin, Version 2.000: A Software for Populations Genetics Data Analysis.’ (Genetics and Biometry Laboratory, University of Geneva: Geneva, Switzerland.)

Seamons, T. R. , Bentzen, P. , and Quinn, T. P. (2004). The mating system of steelhead, Oncorhynchus mykiss, inferred by molecular analysis of parents and progeny. Environmental Biology of Fishes 69, 333–344.
Crossref | GoogleScholarGoogle Scholar |

Slettan, A. , Olsaker, I. , and Lie, Ø. (1995). Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Animal Genetics 26, 281–282.
PubMed |

Slettan, A. , Olsaker, I. , and Lie, Ø. (1996). Polymorphic Atlantic salmon (Salmo salar L.) microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics 27, 57–58.
PubMed |

Thériault, V. , Bernatchez, L. , and Dodson, J. J. (2007). Mating system and individual reproductive success of sympatric anadromous and resident brook charr, Salvelinus fontinalis, under natural conditions. Behavioral Ecology and Sociobiology 62, 51–65.
Crossref | GoogleScholarGoogle Scholar |

Wang, J. L. (2002). An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215.
PubMed |

Wang, J. L. (2004). Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979.
Crossref | GoogleScholarGoogle Scholar | PubMed |