Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Can regional nutrient status be used to predict plant biomass, canopy structure and epiphyte biomass in the temperate seagrass Amphibolis antarctica?

Simon R. Bryars
+ Author Affiliations
- Author Affiliations

South Australian Research and Development Institute (Aquatic Sciences), PO Box 120, Henley Beach, SA 5022, Australia. Present address: Department for Environment and Heritage, GPO Box 1047, Adelaide, SA 5001, Australia. Email: bryars.simon@sa.gov.au

Marine and Freshwater Research 60(10) 1054-1067 https://doi.org/10.1071/MF08194
Submitted: 27 June 2008  Accepted: 30 March 2009   Published: 20 October 2009

Abstract

The seagrass Amphibolis antarctica is an important component of coastal soft-sediment ecosystems across southern Australia. Large-scale losses of A. antarctica at several locations have been linked to anthropogenic nutrient inputs. The present study comprised a field survey to test whether the spatial patterns of plant biomass, canopy structure and epiphyte biomass in A. antarctica could be predicted based on expectations related to nutrient status across two regions within Gulf St Vincent, South Australia. Specific predictions were that: (1) plant biomass, plant density, plant height, leaf cluster frequency and leaf frequency are all lower in the east (higher nutrient) region than in the west region; and (2) epiphyte biomass and epiphyte load are higher in the east than in the west. Regional nutrient status was a poor predictor of most of the parameters measured, with the opposite trends to those predicted often occurring. Plant biomass, canopy structure and epiphyte biomass appear to be a result of several site-specific factors that are not fully understood at this time. The results of the present study have significant implications for making generalised predictions and for monitoring A. antarctica on urbanised coasts, and will also be useful for informing ecological studies on plant–epiphyte and plant–animal interactions in A. antarctica ecosystems.

Additional keywords: epiphyte load, Gulf St Vincent, plant morphology, seagrass monitoring, South Australia.


Acknowledgements

The Natural Heritage Trust provided funding. Special thanks go to Dennis Gonzalez for processing most of the samples. Thanks also go to Mandee Theil, Jodi Lill, Greg Collings, Yvette Eglinton and Lisa Cousins for field and laboratory assistance. Thanks go to Mike Steer and Greg Collings for fruitful discussions about Amphibolis, sampling and analysis. Jason Tanner, Ib Svane, Greg Collings, two anonymous reviewers and the Editor of MFR provided many useful comments on draft versions of the manuscript. Seagrass was collected under a general exemption held by SARDI Aquatic Sciences.


References

Bryars S., and Rowling K. (2008). Benthic habitats of eastern Gulf St Vincent: major changes in seagrass distribution and composition since European settlement of Adelaide. In ‘Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia’. (Ed. S. Bryars.) pp. 5–27. (South Australian Research and Development Institute (Aquatic Sciences): Adelaide.)

Bryars, S. , and Wear, R. (2008). Investigator Group Expedition 2006: seagrasses of the Investigator Group region: Posidonia meadow condition in a pristine offshore marine environment. Transactions of the Royal Society of South Australia 132, 75–88.
Bryars S., Miller D., Collings G., Fernandes M., Mount G., et al. (2006). Field surveys 2003–2005: assessment of the quality of Adelaide’s coastal waters, sediments and seagrasses. ACWS Technical Report No. 14 prepared for the Adelaide Coastal Waters Study Steering Committee. South Australian Research and Development Institute (Aquatic Sciences) Publication No. RD01/0208–15, Adelaide.

Bryars S., Wear R., and Collings G. (2008a). Seagrasses of Gulf St Vincent and Investigator Strait. In ‘Natural History of Gulf St Vincent’. (Eds S. A. Shepherd, S. Bryars, I. Kirkegaard, P. Harbison and J. T. Jennings.) pp. 132–147. (Royal Society of South Australia: Adelaide.)

Bryars S., Collings G., and Theil M. (2008b). Effects of in situ light deprivation on the biomass and epiphyte load of Amphibolis antarctica. In ‘Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia’. (Ed. S. Bryars.) pp. 54–61. (South Australian Research and Development Institute (Aquatic Sciences): Adelaide.)

Bye J. A. T. (1976). Physical oceanography of Gulf St Vincent and Investigator Strait. In ‘Natural History of the Adelaide Region’. (Eds C. R. Twidale, M. J. Tyler and B. P. Webb.) pp. 143–160. (Royal Society of South Australia: Adelaide.)

Carruthers T. J. B. (1999). Within canopy growth strategies of the two seagrass species Amphibolis griffithii (J. Black) den Hartog and Amphibolis antarctica (Labillardiere) Sonder & Ascherson ex Ascherson. In ‘The Seagrass Flora and Fauna of Rottnest Island, Western Australia’. (Eds D. I. Walker and F. E. Wells.) pp. 41–50. (Western Australian Museum: Perth.)

Collier, C. J. , Lavery, P. S. , Masini, R. J. , and Ralph, P. J. (2007). Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Marine Ecology Progress Series 337, 103–115.
Crossref | GoogleScholarGoogle Scholar | Collings G. (2008). Large scale rehabilitation trial. In ‘Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia’. (Ed. S. Bryars.) pp. 70–89. (South Australian Research and Development Institute (Aquatic Sciences): Adelaide.)

Collings G., Bryars S., Nayar S., Miller D., Lill J., et al. (2006). Elevated nutrient responses of the meadow forming seagrasses, Amphibolis and Posidonia, from the Adelaide metropolitan coastline. ACWS Technical Report No. 11 prepared for the Adelaide Coastal Waters Study Steering Committee. South Australian Research and Development Institute (Aquatic Sciences), Publication No. RD01/0208–16, Adelaide.

Connell, S. D. , Russell, B. D. , Turner, D. J. , Shepherd, S. A. , and Kildea, T. , et al. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series 360, 63–72.
Crossref | GoogleScholarGoogle Scholar | Hauxwell J., and Valiela I. (2004). Effects of nutrient loading on shallow seagrass-dominated coastal systems: patterns and processes. In ‘Estuarine Nutrient Cycling: The Influence of Primary Producers’. (Eds S. Nielsen, G. Banta and M. Pedersen.) pp. 59–92. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Horinouchi, M. (2007). Review of the effects of within-patch scale structural complexity on seagrass fishes. Journal of Experimental Marine Biology and Ecology 350, 111–129.
Crossref | GoogleScholarGoogle Scholar | Lill J. S. (2007). Stable nitrogen isotopes and macronutrient allocation within Amphibolis antarctica (Labill.) Sonders and Aschers. B.Sc.(Honours) Thesis, Flinders University of South Australia.

Moltschaniwskyj, N. A. , and Pecl, G. T. (2003). Small-scale spatial and temporal patterns of egg production by the temperate loliginid squid Sepioteuthis australis. Marine Biology 142, 509–516.
Pattiaratchi C., Newgard J., and Hollings B. (2006). Physical oceanographic studies of Adelaide coastal waters using high resolution modelling, in-situ observations and satellite techniques – Sub Task 2 Final Technical Report. ACWS Technical Report No. 20 prepared for the Adelaide Coastal Waters Study Steering Committee. School of Environmental Systems Engineering, University of Western Australia.

Peterson, C. H. , Luettich, R. A. , Micheli, F. , and Skilleter, G. A. (2004). Attenuation of water flow inside seagrass canopies of differing structure. Marine Ecology Progress Series 268, 81–92.
Crossref | GoogleScholarGoogle Scholar | Ralph P. J., Tomasko D., Moore K., Seddon S., and Macinnis-Ng C. M. O. (2006). Human impacts on seagrasses: eutrophication, sedimentation, and contamination. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth and C. M. Duarte.) pp. 567–593. (Springer-Verlag: Dordrecht, The Netherlands.)

Robertson E. L. (1984). Seagrasses. In ‘The Marine Benthic Flora of Southern Australia. Part 1’. (Ed. H. B. S. Womersley.) pp. 57–122. (South Australian Government Printers: Adelaide.)

Russell, B. D. , Elsdon, T. S. , Gillanders, B. W. , and Connell, S. D. (2005). Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Marine Biology 147, 551–558.
Crossref | GoogleScholarGoogle Scholar | Shepherd S. A., and Sprigg R. C. (1976). Substrate, sediments and subtidal ecology of Gulf St Vincent and Investigator Strait. In ‘Natural History of the Adelaide Region’. (Eds C. R. Twidale, M. J. Tyler and B. P. Webb.) pp. 161–174. (Royal Society of South Australia: Adelaide.)

Shepherd S. A., McComb A. J., Bulthuis D. A., Neverauskas V., Steffensen D. A., et al. (1989). Decline of seagrasses. In ‘Biology of Seagrasses. A Treatise of the Biology of Seagrasses with Special Reference to the Australian Region’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 346–393. (Elsevier: New York.)

Steer, M. A. , and Moltschaniwskyj, N. A. (2006). The effects of egg position, egg mass size, substrate and biofouling on embryo mortality in the squid Sepioteuthis australis. Reviews in Fish Biology and Fisheries 17, 173–182.
Crossref | GoogleScholarGoogle Scholar |

Udy, J. W. , and Dennison, W. C. (1997). Growth and physiological responses of three seagrass species to elevated sediment nutrients. Journal of Experimental Marine Biology and Ecology 217, 253–277.
Crossref | GoogleScholarGoogle Scholar |

Underwood, A. J. (1981). Techniques of analysis of variance in experimental marine biology and ecology. Oceanography and Marine Biology: an Annual Review 19, 513–605.


Verduin, J. J. , and Backhaus, J. O. (2000). Dynamics of plant–flow interactions for the seagrass Amphibolis antarctica: field observations and model simulations. Estuarine, Coastal and Shelf Science 50, 185–204.
Crossref | GoogleScholarGoogle Scholar |

Walker, D. I. (1985). Correlations between salinity and growth of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany 23, 13–26.
Crossref | GoogleScholarGoogle Scholar |

Walker, D. I. , and McComb, A. J. (1988). Seasonal variation in the production, biomass and nutrient status of Amphibolis antarctica (Labill.) Sonder ex Aschers. and Posidonia australis Hook. F. in Shark Bay, Western Australia. Aquatic Botany 31, 259–275.
Crossref | GoogleScholarGoogle Scholar |

Walker, D. I. , and McComb, A. J. (1992). Seagrass degradation in Australian coastal waters. Marine Pollution Bulletin 25, 191–195.
Crossref | GoogleScholarGoogle Scholar |

Wood, N. , and Lavery, P. (2000). Monitoring seagrass ecosystem health – the role of perception in defining health and indicators. Ecosystem Health 6, 134–148.
Crossref | GoogleScholarGoogle Scholar |