Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The effects of sediment quality on benthic macroinvertebrates in the River Murray, Australia

K. R. Townsend A C , V. J. Pettigrove A B , M. E. Carew A and A. A. Hoffmann A
+ Author Affiliations
- Author Affiliations

A Centre for Environmental Stress and Adaptation Research, Department of Zoology, University of Melbourne, Vic. 3010, Australia.

B Research and Technology, Melbourne Water Corporation, GPO Box 4342, Melbourne, Vic. 3010, Australia.

C Corresponding author. Email: tok@unimelb.edu.au

Marine and Freshwater Research 60(1) 70-82 https://doi.org/10.1071/MF08121
Submitted: 15 April 2008  Accepted: 12 September 2008   Published: 29 January 2009

Abstract

Aquatic sediments act as a sink for pollutants that potentially impact on aquatic communities. However, spatial correlations between pollution, hydrology, catchment disturbance and other factors make it difficult to determine the impact of sediment pollution. Field-based microcosm experiments utilising aquatic macroinvertebrates are one approach to isolating the biological effects of sediment pollution on aquatic biota. A field-based microcosm experiment was used to assess the effects of sediment from 14 sites along the River Murray system, Australia. Aquatic ecosystem declines have been observed in this river, but few studies have investigated the quality of its sediments or their biological impact. Chironomidae (midge larvae) dominated the microcosm experiment and were useful as bioindicators of sediment quality. Community composition, high incidences of larval mouthpart deformities in Procladius paludicola and skewed sex ratios in Tanytarsus fuscithorax indicated sediments from irrigation districts were having a toxic effect, but only nutrients were detected at biologically relevant concentrations and these did not correlate with species responses. The present study showed that the biological endpoints used in the microcosm approach can elucidate sediment toxicity even in the absence of supporting sediment chemistry and could successfully be applied to examine changes in sediment quality along a river system.

Additional keywords: Chironomidae, Darling River, Murrumbidgee River, Procladius, sediment toxicity, sex ratio.


Acknowledgements

We thank Jennifer Anson, Matthew O’Brien and Katy Jeppe for assisting with field work, Steve Marshall for assisting with field work and sediment collection, and the Price family for the use of their dam. We are grateful to David Sharley, Andrew Boulton, Dr B. R. Taylor and three anonymous reviewers for their helpful comments.


References

Allan, D. , Ericson, D. , and Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37, 149–161.
Crossref | GoogleScholarGoogle Scholar | ANZECC/ARMCANZ (2000). ‘National Water Quality Management Strategy, Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1 – The Guidelines.’ (Australian Water Association: Artarmon, Australia.)

Austin, N. R. , Prendergast, J. B. , and Collins, M. D. (1996). Phosphorus losses in irrigation runoff from fertilized pasture. Journal of Environmental Quality 25, 63–68.
CAS | Bennison G. L., Hillman T. J., and Suter P. J. (1989). Macroinvertebrates of the River Murray (survey and monitoring: 1980–1985). Water quality report number 3. Murray–Darling Basin Commission, Canberra.

Bhattacharyay, G. , Sadhu, A. K. , Mazumdar, A. , and Chaudhuri, P. K. (2005). Antennal deformities of chironomid larvae and their use in biomonitoring of heavy metal pollutants in the river Damodar of West Bengal, India. Environmental Monitoring and Assessment 108, 67–84.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Cranston P. S. (2000). The electronic guide to the Chironomidae of Australia. Available at http://www.science.uts.edu.su/sasb/chiropage [Accessed 7 October 2007].

Dauta, A. , Lapaquellerie, Y. , and Maillet, N. (1999). Role of the dams on the River Lot on two types of pollution: point-sources (cadmium) and non-point sources (phosphorus). Hydrobiologia 410, 325–329.
Crossref | GoogleScholarGoogle Scholar | CAS | DeRose R. C., Prosser I. P., Weisse M., and Hughes A. O. (2003). Patterns of erosion and sediment and nutrient transport in the Murray–Darling Basin. Technical Report 32/03. CSIRO Land and Water, Canberra.

Fleeger, J. W. , Carman, K. R. , and Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. The Science of the Total Environment 317, 207–233.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Geddes M. C. (1990). Crayfish. In ‘The Murray’. (Eds N. Mackay and D. Eastburn.) pp. 302–307. (Murray–Darling Basin Commission: Canberra.)

Hahn, T. , Liess, M. , and Schulz, R. (2001). Effects of the hormone mimetic insecticide tebufenozide on Chironomus riparius larvae in two different exposure setups. Ecotoxicology and Environmental Safety 49, 171–178.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | IEH (2005). Chemicals purported to be endocrine disrupters: a compilation of published lists. Web Report W20, MRC Institute for Environment and Health, Leicester, UK. Available at http://www.le.ac.uk/ieh [Accessed 28 March 2008].

Janssens de Bisthoven, L. , and Gerhardt, A. (2003). Chironomidae (Diptera, Nematocera) fauna in three small streams of Skania, Sweden. Environmental Monitoring and Assessment 83, 89–102.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | McCune B., Mefford M. J. (1999). ‘PC-ORD: Multivariate analysis of ecological data, version 4.’ (M; M Software Design: Gleneden Beach, OR, USA.)

McKenzie-Smith, F. , Tiller, D. , and Allen, D. (1994). Organochlorine pesticide residues in water and sediments from the Ovens and King Rivers, North-East Victoria, Australia. Archives of Environmental Contamination and Toxicology 26, 483–490.
Crossref | GoogleScholarGoogle Scholar | CAS | MDBC (2006). ‘Irrigation. Resource Management.’ (Murray–Darling Basin Commission: Canberra.)

MDBMC (2005). ‘MDBC Basin Salinity Management Strategy. 2004–2005 Annual Implementation Report.’ (Murray–Darling Basin Commission: Canberra.)

Meier, P. G. , Kyungho, C. , and Sweet, L. I. (2000). Acute and chronic life cycle toxicity of acenaphthene and 2,4,6-trichlorophenol to the midge Paratanytarsus parthenogeneticus (Diptera: Chironomidae). Aquatic Toxicology 51, 31–44.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Moran C., Prosser I., DeRose R., Lu H., Croke B., et al. (2005). ‘Sediments and Nutrients in the Rivers of the Murray–Darling Basin. Targeting the Future.’ (Murray–Darling Basin Commission: Canberra.)

Muschal, M. , and Warne, M. St. J. (2003). Risk posed by pesticides to aquatic organisms in rivers of northern inland New South Wales, Australia. Human and Ecological Risk Assessment 9, 1765–1787.
Crossref | GoogleScholarGoogle Scholar | CAS | Norris R. H., Liston P., Davies N., Coysh J., Dyer F., et al. (2001). Snapshot of the Murray–Darling Basin River Condition. Report to the Murray–Darling Basin Commission. Cooperative Research Centre for Freshwater Ecology, and CSIRO Land and Water, Canberra.

Pascoe, D. , Williams, K. A. , and Green, D. W. J. (1989). Chronic toxicity of cadmium to Chironomus riparius Meigen: effects upon larval development and adult emergence. Hydrobiologia 175, 109–115.
Crossref | GoogleScholarGoogle Scholar | CAS | Pettigrove V., Korth W., Thomas M., and Bowmer K. H. (1994). The impact of pesticides used in rice agriculture on larval chironomid morphology. In ‘Chironomids: From Genes to Ecosystems’. (Ed. P. Cranston.) pp. 81–88. (CSIRO Publishing: Melbourne.)

Rakotondravelo, M. L. , Anderson, T. D. , Charlton, R. E. , and Zhu, K. Y. (2006). Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (Diptera: Chironomidae). Archives of Environmental Contamination and Toxicology 51, 325–359.
Sharley D. J., Hoffmann A. A., and Pettigrove V. Effects of sediment quality on macroinvertebrates in the Sunraysia region of the Murray–Darling rivers, Australia. Environmental Pollution, in press. doi:10.1016/J.ENVPOL.2008.06.014

Sheldon, F. , and Walker, K. F. (1993). Pipelines as a refuge for freshwater snails. Regulated Rivers 8, 295–299.
Crossref | GoogleScholarGoogle Scholar | Sullivan C., Saunders J., and Welsh D. (1988). Phytoplankton of the River Murray. Review of monitoring 1980–1985. Water Quality Report No. 2. Murray–Darling Basin Commission, Canberra.

UNEP (2005). Water quality monitoring programme in the Iraqi Marshlands. Summary report. Available from http://marshlands.unep.or.jp [Accessed 3 April 2008].

Wallace, J. B. (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41, 115–139.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Warwick, W. F. (1985). Morphological deformities in Chironomidae (Diptera) larvae as measures of toxic stress in freshwater ecosystems: indexing antennal deformities in Chironomus Meigen. Canadian Journal of Fisheries and Aquatic Sciences 42, 1881–1914.


Warwick, W. F. (1989). Morphological deformities in larvae of Procladius Skuse (Diptera, Chironomidae) and their biomonitoring potential. Canadian Journal of Fisheries and Aquatic Sciences 46, 1255–1270.
Crossref | GoogleScholarGoogle Scholar |

Watts, M. M. , Pascoe, D. , and Carroll, K. (2003). Exposure to 17α-ethinylestradiol and bisphenol A – effects on larval moulting and mouthpart structure in Chironomus riparius. Ecotoxicology and Environmental Safety 54, 207–215.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Weston, D. P. , Penry, D. L. , and Gulmann, L. K. (2000). The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Archives of Environmental Contamination and Toxicology 38, 446–454.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Williams, D. D. , Nesterovitch, A. I. , Tavares, A. F. , and Muzzatti, E. G. (2001). Morphological deformities occurring in Belarusian chironomids (Diptera: Chironomidae) subsequent to the Chernobyl nuclear disaster. Freshwater Biology 46, 503–512.
Crossref | GoogleScholarGoogle Scholar |

Zoumis, T. , Schmidt, A. , Grigorova, L. , and Calmano, W. (2001). Contaminants in sediments: remobilisation and demobilisation. The Science of the Total Environment 266, 195–202.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |