Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment

R. Kumar A B , P. Muhid C , H.-U. Dahms B , L.-C. Tseng B and J.-S. Hwang B D
+ Author Affiliations
- Author Affiliations

A Ecosystem Research Lab, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.

B Institute of Marine Biology, National Taiwan Ocean University, Keelung, 202, Taiwan.

C Present address: Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

D Corresponding author. Email: Jshwang@mail.ntou.edu.tw

Marine and Freshwater Research 59(9) 817-835 https://doi.org/10.1071/MF07143
Submitted: 7 August 2007  Accepted: 1 July 2008   Published: 7 October 2008

Abstract

Predator-induced control of pests depends on the predator’s preference for the target pest over naturally co-occurring prey species. We compared the larvivorous efficiency of three common freshwater predators: mosquitofish (Gambusia affinis; Baird and Girard, 1854), dragonfly naiads (Zyxomma petiolatum; Rambur, 1842) and copepods (Mesocyclops aspericornis; Daday, 1906) on different instars and the relative abundances of the mosquito Anopheles stephensi (Liston, 1901) in the presence of alternative cladoceran prey, either Moina macrocopa (Straus, 1820) or Daphnia similoides (Hudec, 1991). Larval removal rate decreased with increasing larval size and instar stage. The maximum consumption rate was by mosquitofish, followed by dragonfly naiads and copepods. The presence of either of the alternative prey significantly reduced larval consumption by all three predators, except in the D. similoides–mosquito larvae combination for naiads. Mosquitofish and copepods preferred early instars of the mosquito. Prey selectivity indices for early mosquito instars against D. similoides did not differ between mosquitofish and copepods, whereas naiads had significantly lower index values than the other two predators. Considering the negative impacts of mosquitofish on native assemblages, that is, its invasiveness and its lower selectivity for mosquito larvae, our results suggest that the feasibility of using copepods in large-scale control programs needs to be evaluated.

Additional keywords: biocontrol, foraging, preference, prey selection, vector control.


Acknowledgements

We thank four anonymous referees whose comments and suggestions substantially improved the quality of the manuscript. R. Kumar acknowledges the National Science Council, Taiwan, for a postdoctoral fellowship (0940020949Dt 2005/03/10). We acknowledge the support of the Taiwan nuclear power plant to J.-S. Hwang. Acharya Narendra Dev College, University of Delhi, is acknowledged for providing leave to the first author and the Indian Council of Medical Research is acknowledged for granting a Project Ref. No. 5/8-7(179)/2002-ECD-II to R. Kumar. We thank Catherine Leigh for her suggestions on a previous version of the manuscript. The study was permitted by the institutional ethics committee (Animal House Ethics Committee) of the University of Delhi.


References

Aditya, G. , and Saha, G. K. (2006). Predation of the beetle Rhantus sikkimensis (Coleoptera : Dytiscidae) on the larvae of Chironomus Meigen (Diptera : Chironomidae) of the Darjeeling Himalayas of India. Limnologica 36, 251–257.
Allen G. R., Midgley S. H., and Allen M. (2002). ‘Field Guide to the Freshwater Fishes of Australia.’ (Quality Press: Perth.)

Andrealis, T. G. , and Gere, M. A. (1992). Laboratory evaluation of Acanthocyclops vernalis and Diacylops bicuspidatus thomasi (Copepoda : Cyclopoida) as predators of Aedes canadensis and Ae. stimulans (Diptera : Culicidae). Journal of Medical Entomology 29, 974–979.
PubMed | Barbosa P., and Segarra-Carmona A. (1993). Criteria for the selection of pest arthropod species as candidates for biological control. In ‘Steps in Classical Arthropod Biological Control’. (Eds R. G. van Driesche and T. S. Bellows Jr.) pp. 5–23. (Proceedings of the Thomas Say Publication in Entomology; Springfield, IL.)

Bellows, T. S. (2001). Restoring population balance through natural enemy introductions. Biological Control 21, 199–205.
Crossref | GoogleScholarGoogle Scholar | Brown M. D., Kay B. H., and Green J. G. (1991a). Predation efficiency of North-eastern Australian Mesocyclops (Copepoda : Cyclopidae) for mosquito larvae. In ‘Proceedings of the Fourth International Conference on Copepoda, 1991’. (Eds S. Uye, S. Nishida and J.-S. Ho.) pp. 329–338. (Bulletin of the Plankton Society of Japan, Hokkaido (supplement).)

Brown, M. D. , Kay, B. H. , and Hendrix, J. H. (1991b). Evaluation of Australian Mesocyclops (Copepoda : Cyclopoida) for mosquito control. Journal of Medical Entomology 28, 618–623.
PubMed | Courtnay W. R.Jr., and Maffe G. K. (1989). Small fishes in strange places: a review of introduced poeciliids. In ‘Ecology and Evolution of Live-bearing Fishes (Poeciliidae)’. (Eds G. K. Meffe and F. F. Snelson Jr.) pp. 319–331. (Prentice Hall: Englewood Cliffs.)

Denoth, M. , Frid, L. , and Myers, J. H. (2002). Multiple agents in biological control: improving the odds? Biological Control 24, 20–30.
Crossref | GoogleScholarGoogle Scholar | Gill J. (2001). ‘Generalized Linear Models: a Unified Approach. Sage University Paper Series on Quantitative Applications in the Social Sciences No. 134.’ (Sage: Thousand Oaks, CA, USA.)

Gill H. S., Hambleton S. J., and Morgan D. L. (1999). Is the mosquitofish, Gambusia holbrooki (Poeciliidae), a major threat to the native freshwater fishes of south-western Australia? In ‘Proceedings of the 5th Indo-Pacific Fish Conference: Noumea, New Caledonia, 3–8 November 1997’. (Eds B. Seret and J.-Y. Sire.) pp. 393–403. (Societe Francaise d’Ichtyologie & Institut de Recherche pour le Development: Paris.)

Goodsell, J. A. , and Kats, L. B. (1999). Effect of introduced mosquitofish on pacific tree frogs and the role of alternative prey. Conservation Biology 13, 921–924.
Crossref | GoogleScholarGoogle Scholar | Gotelli N. J., and Ellison A. M. (2004). ‘A Primer of Ecological Statistics.’ (Sinauer Associates: Sunderland.)

Hagman, M. , and Shine, R. (2007). Effects of invasive cane toads on Australian mosquitoes: does the dark cloud have a silver lining? Biological Invasions 9, 445–452.
Crossref | GoogleScholarGoogle Scholar | ISSG (2000). ‘100 of the World’s Worst Invasive Species. Database of the Invasive Species Specialist Group.’ (University of Auckland: Auckland.)

Ivantsoff, W. , and Aarn (1999). Detection of predation on Australian native fishes by Gambusia holbrooki. Marine and Freshwater Research 50, 467–468.
Kak A. (1998). Field and laboratory studies on interaction between rotifers and cladocerans. PhD Thesis, University of Delhi.

Kay, B. H. (1996). The use of predaceous copepods in controlling dengue and other vectors. Dengue Bulletin 20, 93–98.
Krebs J. R., and Kacelnik A. (1991). Decision making. In ‘Behavioral Ecology, An Evolutionary Approach’. (Eds J. R. Krebs and N. B. Davis.) pp. 105–136. (Blackwell Scientific Publications: London.)

Kumar, A. (1981). Biology of Indian dragonflies with special reference to seasonal regulation and larval development. Bulletin of Entomology 17, 37–47.
Laird M. (1988). ‘The Natural History of Larval Mosquito Habitats.’ (Academic Press: London.)

Landry, M. R. (1981). Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Marine Biology 65, 77–82.
Crossref | GoogleScholarGoogle Scholar | Lloyd L. N., Arthington A. H., and Milton D. A. (1986). The mosquitofish: a valuable mosquito control agent or a pest? In ‘Ecology of Exotic Plants and Animals in Australasia’. (Ed. R. N. Kitching.) pp. 7–25. (Jacaranda–Wiley Press: Brisbane.)

Lounibos L. P., and Frank J. H. (1994). Biological control of mosquitoes. In ‘Pest Management in the Subtropics. Biological Control – A Florida Perspective’. (Eds D. Rosen, F. D. Bennett and J. L. Capinera.) pp. 395–409. (Intercept Press: Andover.)

Lounibos, L. P. , Escher, R. L. , Nishimura, N. , and Juliano, S. A. (1997). Long-term dynamics of a predator used for biological control and decoupling from mosquito prey in a subtropical treehole ecosystem. Oecologia 111, 189–200.
Crossref | GoogleScholarGoogle Scholar | Rishikesh N., Dubitiskij A. M., and Moreau C. M. (1988). Malaria vector control: biological control. In ‘Malaria: Principles and Practices of Malariology’. (Eds W. H. Wernsdorfer and I. McGregor.) pp. 1227–1250. (Churchill Livingstone: Edinburgh.)

Ritchie, S. A. , and Laidlaw-Bell, C. (1994). Do fish repel oviposition by Aedes taeniorhynchus? Journal of the American Mosquito Control Association 10, 380–384.
Scheiner S. M. (2001). MANOVA: multiple response variables and multispecies interactions. In ‘Design and Analysis of Ecological Experiments, 2nd edn’. (Eds S. M. Scheiner and J. Gurevitch.) pp. 99–115. (Oxford University Press: Oxford.)

Sharma, S. K. , and Hamzakoya, K. K. (2001). Urban malaria, and Aedes aegypti, Vector of Dengue/DHF, in the Arabian Sea Islands of Lakshadweep, India. Dengue Bulletin 25, 88–91.
Swanson C., Cech J. J.Jr., and Piedrahita R. H. (1996). ‘Mosquitofish: Biology, Culture and Use in Mosquito Control.’ (Mosquito and Vector Control Association California and the University of California Mosquito Research Program: Sacramento.)

Torres-Estrada, J. , Rodriguez, M. H. , Cruz-Lopez, L. , and Arredondo-Jimenez, J. I. (2001). Selective oviposition by Aedes aegypti (Diptera : Culicidae) in response to Mesocyclops longisetus (Copepoda : Cyclopoidea) under laboratory and field conditions. Journal of Medical Entomology 38, 188–192.
Williams D. D. (1987). ‘The Ecology of Temporary Waters.’ (Croom Helm: London.)

Williams, D. D. (1997). Temporary ponds and their invertebrate communities. Aquatic Conservation: Marine & Freshwater Ecosystems 7, 105–117.
Crossref | GoogleScholarGoogle Scholar | Wurtsbaugh W., Cech J. J., and Compton J. (1980). Effect of fish size on prey size selection in Gambusia affınis. Proceedings and Papers of the Annual Conference of the California Mosquito and Vector Control Association 48, 48–51.

Zoppi de Roa, E. , Gordon, E. , Montiel, E. , Delgado, L. , Berti, J. , and Ramos, S. (2002). Association of cyclopoid copepods with the habitat of the malaria vector Anopheles aquasalis in the Peninsula of Paria, Venezuela. Journal of the American Mosquito Control Association 18, 47–51.