Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Spatial and temporal variation in algal-assemblage structure in isolated dryland river waterholes, Cooper Creek and Warrego River, Australia

Glenn B. McGregor A C D , Jonathan C. Marshall A and Martin C. Thoms B
+ Author Affiliations
- Author Affiliations

A Natural Resource Sciences, Queensland Department of Natural Resources, Mines and Water, 120 Meiers Road, Indooroopilly, Qld 4068, Australia.

B CRC for Freshwater Ecology (CRCFE), University of Canberra, ACT 2016, Australia.

C School of Integrative Biology, The University of Queensland, Qld 4072, Australia.

D Corresponding author. Email: glenn.mcgregor@nrm.qld.gov.au

Marine and Freshwater Research 57(4) 453-466 https://doi.org/10.1071/MF05128
Submitted: 29 June 2005  Accepted: 21 March 2006   Published: 14 June 2006

Abstract

The scale at which algal biodiversity is partitioned across the landscape, and the biophysical processes and biotic interactions which shape these communities in dryland river refugia was studied on two occasions from 30 sites in two Australian dryland rivers. Despite the waterholes studied having characteristically high levels of abiogenic turbidity, a total of 186 planktonic microalgae, 253 benthic diatom and 62 macroalgal species were recorded. The phytoplankton communities were dominated by flagellated cryptophytes, euglenophytes and chlorophytes, the diatom communities by cosmopolitan taxa known to tolerate wide environmental conditions, and the macroalgal communities by filamentous cyanobacteria. All algal communities showed significant differences between catchments and sampling times, with a suite of between 5 and 12 taxa responsible for ~50% of the observed change. In general, algal assemblage patterns were poorly correlated with the measured environmental variables. Phytoplankton and diatom assemblage patterns were weakly correlated with several waterhole geomorphic measures, whereas macroalgal assemblage patterns showed some association with variability in ionic concentration.

Extra keywords: algae, cyanobacteria, dryland rivers, epipelic diatoms, epixylic diatoms, floodplain waterholes, Lake Eyre Basin, macroalgae, Murray–Darling Basin, phytoplankton, refugia.


Acknowledgments

This study formed part of the Dryland River Refugia Project funded by the Cooperative Research Centre for Freshwater Ecology, Canberra. We thank researchers from the Centre for Riverine Landscapes at Griffith University, Queensland Department of Natural Resources, Mines and Water, University of Canberra, and Murray–Darling Basin Freshwater Research Centre (Goondiwindi Laboratory) for field and laboratory assistance. Light penetration, diel dissolved oxygen and temperature data was kindly provided by Christy Fellows, Griffith University. Benthic diatom samples were analysed and identified by Peter Gell and his team at Diatoma, University of Adelaide.


References

Angeler, D. G. , Alvarez-Cobelas, M. , Rojo, C. , and Sànchez-Carrillo, S. (2000). The significance of water inputs to phytoplankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain). Journal of Plankton Research 22, 2075–2093.
Crossref | GoogleScholarGoogle Scholar | Anon  (1998). Draft Water Management Plan for Cooper Creek – Information paper. Department of Natural Resources, Queensland, Australia.

APHA (1975). ‘Standard Methods for the Examination of Water and Wastewater.’ 14th edn. (American Public Health Association: Washington, DC.)

Arthington, A. H. , Balcombe, S. R. , Wilson, G. A. , Thoms, M. C. , and Marshall, J. (2005). Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia. Marine and Freshwater Research 56, 25–35.
Crossref | GoogleScholarGoogle Scholar | Biggs B. J. F. (1996). Patterns of benthic algae in streams. In ‘Algal Ecology – Freshwater Benthic Ecosystems’. (Eds R. J. Stevenson, M. L. Bothwell and R. L. Lowe.) pp. 31–56. (Academic Press: San Diego, CA.)

Biggs, B. J. F. , Duncan, M. J. , Jowett, I. G. , Quinn, J. M. , Hickey, C. W. , Davies-Colley, R. J. , and Close, M. E. (1990). Ecological characterisation, classification and modelling of New Zealand rivers: an introduction and synthesis. New Zealand Journal of Marine and Freshwater Research 24, 277–304.
Boulton A. J., Sheldon F., Thoms M. C., and Stanley E. H. (2000). Problems and constraints in managing rivers with variable flow regimes. In ‘Global Perspectives on River Conservation: Science, Policy and Practice’. (Eds P. J. Boon, B. R. Davies and G. E. Petts.) pp. 441–426. (John Wiley and Sons: London.)

Branco, L. H. Z. , and Necchi, O. (1998). Distribution of macroalgae in three tropical drainage basins of southeastern Brazil. Archiv fuer Hydrobiologie 142, 241–256.
Castenholz R. W., and Garcia-Pichel F. (2000). Cyanobacterial reponses to UV-radiation. In ‘The Ecology of Cyanobacteria’. (Eds B. A. Whitton and M. Potts.) pp. 591–611. (Kluwer Academic Publishers: Dordrecht.)

Cellot, B. , Mouillot, F. , and Henry, C. P. (1998). Flood drift and propagule bank of aquatic macrophytes in a riverine wetland. Journal of Vegetation Science 9, 631–640.
Crossref | GoogleScholarGoogle Scholar | Chessman B. C., Gell P., Newall P., and Sonneman J. (1998). Draft protocol for sampling and laboratory processing of diatoms for the monitoring and assessment of streams. In ‘An Illustrated Key to Common Diatom Genera from Southern Australia’. (Eds P. A. Gell, J. A. Sonneman, M. A. Reid, M. A. Illman and A. J. Sincock.) Identification Guide No. 26. (Cooperative Research Centre for Freshwater Ecology: Thurgoona, NSW.)

Clarke, K. R. , and Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92, 205–219.
Clarke K. R., and Gorley R. N. (2001). ‘PRIMER v5: User Manual/Tutorial.’ (PRIMER E: Plymouth, UK.)

Clarke K. R., and Warwick R. M. (1994). ‘Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation.’ (Natural Environment Research Council: Plymouth.)

Cooper, S. D. , Barmuta, L. , Sarnelle, O. , Kratz, K. , and Diehl, S. (1997). Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16, 174–188.
Crossref | GoogleScholarGoogle Scholar | EPA (1999). ‘Water Quality Sampling Manual (Qld).’ 3rd edn. (Queensland Environmental Protection Agency: Brisbane.)

Fabbro, L. D. , and Duivenvoorden, L. J. (2000). A two-part model linking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia 438, 13–24.
Crossref | GoogleScholarGoogle Scholar | Heiler G., Hein T., Scheimer F. (1995). Hydrological connectivity and flood pulses as the central aspects for the integrity of a river-floodplain system.Regulated Rivers: Research and Management 11, 351–361.

Holmes, N. T. H. , and Whitton, B. A. (1981). Phytobenthos of the River Tees and its tributaries. Freshwater Biology 11, 139–163.
Crossref | GoogleScholarGoogle Scholar | Hötzel G., and Croome R. (1999). ‘A Phytoplankton Methods Manual for Australian Freshwaters.’ LWRRDC Occasional Paper 22/29. (Land and Water Research and Development Corporation: Canberra.)

Kingsford R. T., and Porter J. L. (1999). Wetlands and waterbirds of the Paroo and Warrego Rivers. In ‘A Free-flowing River: The Ecology of the Paroo River’. (Ed. R. T. Kingsford.) pp. 23–50. (New South Wales National Parks and Wildlife Service: Sydney.)

Kingsford, R. T. , Curtin, A. L. , and Porter, J. (1999). Water flows on Cooper Creek in arid Australia determine “boom” and “bust” periods for waterbirds. Biological Conservation 88, 231–248.
Crossref | GoogleScholarGoogle Scholar | Krammer K., and Lange-Bertalot H. (1986). ‘Sußwasserflora von Mitteleuropa. Bacillariophyceae 2/1 Naviculaceae.’ (Gustav Fischer: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1988). ‘Sußwasserflora von Mitteleuropa. Bacillariophyceae 2/2 Epithemiaceae, Suirellaceae.’ (Gustav Fischer: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1991a). ‘Sußwasserflora von Mitteleuropa. Bacillariophyceae 2/3 Centrales, Fragilariaceae, Eunotiaceae.’ (Gustav Fischer: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1991b). ‘Sußwasserflora von Mitteleuropa. Bacillariophyceae 2/4 Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. Gesamt-literaturverzeichnis Teil 1–4.’ (Gustav Fischer: Stuttgart.)

Leyland, H. V. (1995). Distribution of phytoplankton in the Yolima River Basin, Washington, in relation to geology, land use and other environmental factors. Canadian Journal of Fisheries and Aquatic Sciences 52, 1108–1129.
Morton S. J., Short J., and Baker R. D. (1995). ‘Refugia for Biological Diversity in Arid and Semi-Arid Australia.’ Biodiversity Series, Paper No. 4. (Department of Environment, Sport and Territories: Canberra.)

NR&M (2003). WaterShed. The State of Queensland (Department of Natural Resources and Mines). Available at http://www.nrm.qld.gov.au/watershed/ [Verified 21 May 2006].

Padisak, J. (1993). The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249, 135–156.
Crossref | GoogleScholarGoogle Scholar | Patrick R., and Reimer C. (1966). ‘The Diatoms of the United States. Vol. 1. Monographs of the Academy of Natural Sciences of Philadelphia. No. 13’. (Philadelphia, PA.)

Potapova, M. (1996). Epilithic algal communities in rivers of Kolyma Mountains, NE Siberia, Russia. Nova Hedwigia 63, 309–334.
Round F. E. (1981). ‘The Ecology of Algae.’ (Cambridge University Press: Cambridge.)

Round F. E. (1993). ‘A Review and Methods for the Use of Epilithic Diatoms for Detecting and Monitoring Changes in River Water Quality.’ (HMSO: London.)

Round F. E., Crawford R. M., and Mann D. G. (1990). ‘The Diatoms: Biology and Morphology of the Genera.’ (Cambridge University Press: London.)

Ruzin S. E. (1999). ‘Plant Microtechnique and Microscopy.’ (Oxford University Press: New York.)

Samuels, C. , and Drake, J. A. (1997). Divergent perspectives on community convergence. Trends in Ecology & Evolution 12, 427–432.
Crossref | GoogleScholarGoogle Scholar | Stevenson R. J., Bothwell M. L., and Lowe R. L. (1996). ‘Algal Ecology – Freshwater Benthic Ecosystems.’ (Academic Press: San Diego.)

Stock, M. S. , and Ward, A. K. (1991). Blue-green algal mats in a small stream. Journal of Phycology 27, 325–329.
Thomas D. S. G. (Ed.) (1989). ‘Arid Zone Geomorphology.’ (Belhaven: London.)

Thoms, M. C. , and Sheldon, F. (2000). Lowland rivers: an Australian perspective. Regulated Rivers: Research and Management 16, 375–383.
Crossref | GoogleScholarGoogle Scholar |

Thoms, M. C. , Southwell, M. R. , and McGinness, H. M. (2005). Floodplain–river ecosystems: Fragmentation and water resources development. Geomorphology ,In press.


Walker, K. F. , Sheldon, F. , and Puckridge, J. T. (1995). An ecological perspective on large dryland rivers. Regulated Rivers: Research and Management 11, 85–104.


Williams, W. D. (1985). Biotic adaptations in temporary lentic waters, with special reference to those in semi-arid and arid regions. Hydrobiologia 125, 85–110.
Crossref | GoogleScholarGoogle Scholar |