Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Seasonal succession and long-term stability of pelagic community in a productive reservoir

V. F. Matveev A B C and L. K. Matveeva A
+ Author Affiliations
- Author Affiliations

A Murray–Darling Freshwater Research Centre, CRC for Freshwater Ecology, PO Box 921, Albury, NSW 2640, Australia.

B Present address: CSIRO Land and Water, 120 Meiers Rd, Indooroopilly, Qld 4068, Australia.

C Corresponding author. Email: vlad.matveev@csiro.au

Marine and Freshwater Research 56(8) 1137-1149 https://doi.org/10.1071/MF04289
Submitted: 3 December 2004  Accepted: 7 September 2005   Published: 22 November 2005

Abstract

In Lake Hume, a reservoir located in an active agricultural zone of the Murray River catchment, Australia, time series for the abundances of phytoplankton and zooplankton taxa, monitored from 1991 through to 1996, were stationary (without trends), and plankton taxonomic composition did not change. This indicated ecosystem resilience to strong fluctuations in reservoir water level, and to other potential agricultural impacts, for example eutrophication and pollution. Although biological stressors such as introduced fish and invertebrate predators are known to affect planktonic communities and reduce biodiversity in lakes, high densities of planktivorous stages of alien European perch (Perca fluviatilis) and the presence of carp (Cyprinus carpio) did not translate into non-stationary time series or declining trends for plankton in Lake Hume. However, the seasonal successions observed in the reservoir in different years did not conform well to the Plankton Ecology Group (PEG) model. Significant deviations of the Lake Hume successional pattern from the PEG model included maxima for phytoplankton abundance being in winter and the presence of a clear water phase without large zooplankton grazers. The instability of the water level in Lake Hume probably causes the dynamics of most planktonic populations to be less predictable, but did not initiate the declining trends that have been observed in some other Australian reservoirs. Both the PEG model and the present study suggest that hydrology is one of the major drivers of seasonal succession.

Extra keywords: freshwater plankton, long-term monitoring, time series.


Acknowledgments

This study was funded by the Murray–Darling Freshwater Research Centre and the Murray–Darling Basin Commission in 1991, and by Land and Water Australia (formerly the Land and Water Research and Development Corporation) in 1992–1996. We thank David Mitchell and Russell Shiel for supporting us in various ways, Garth Watson for collecting samples in 1991, John Pengelly for chemical analysis of samples, Colin Payne for field assistance in 1994–1996 and the Murray–Darling Basin Commission for providing data on the relative volumes of Lake Hume. Daryl Nielsen, Darren Baldwin, Peter Gehrke and two anonymous referees commented on an earlier version of the manuscript and suggested useful corrections.


References

Alekseev V. R., and Fryer G. (Eds) (1996). ‘Diapause in the Crustacea. Developments in Hydrobiology 114.’ (Kluwer: Dordrecht.)

Arumugam, P. T. , and Geddes, M. C. (1988). Predation of golden perch (Macquaria ambigua) fry on Daphnia carinata in nursery ponds, Australia. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 23, 1773–1776.
Brönmark C., and Hansson L.-A. (1998). ‘The Biology of Lakes and Ponds.’ (Oxford University Press: Oxford.)

Bruno, M. C. , Loftus, W. F. , Reid, J. W. , and Perry, S. A. (2001). Diapause in copepods (Crustacea) from ephemeral habitats with different hydroperiods in Everglades National Park (Florida, U.S.A.). Hydrobiologia 453/454, 295–308.
Crossref | GoogleScholarGoogle Scholar | Grasshoff K., Ehrhardt M., and Kremling K. (Eds) (1983). ‘Methods of Seawater Analysis.’ 2nd edn. (Verlag Chemie: Weinheim.)

Carpenter S. R., and Kitchell J. F. (1993). ‘The Trophic Cascade in Lakes.’ (Cambridge University Press: Cambridge, UK.)

Diaz, M. M. , and Pedrozo, F. L. (1993). Seasonal succession of phytoplankton in a small Andean Patagonian lake (Rep. Argentina) and some considerations about the PEG Model. Archiv für Hydrobiologie 127, 167–184.
Håkanson L., and Peters R. H. (1995). ‘Predictive Limnology.’ (SPB Academic Publishing: Amsterdam.)

Hawkins, P. R. (1988). The zooplankton of a small tropical reservoir (Solomon Dam, North Queensland). Hydrobiologia 157, 105–118.
Horne A. J., and Goldman C. R. (1994). ‘Limnology.’ 2nd edn. (McGraw-Hill: New York.)

Hosomi, M. , and Sudo, R. (1986). Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion. International Journal of Environmental Studies 27, 267–275.
Kitchell J. F. (Ed.) (1992). ‘Food Web Management. A Case Study of Lake Mendota.’ (Springer-Verlag: New York.)

Kobayashi, T. (1992a). A study of physicochemical conditions, phytoplankton and microcrustacean zooplankton in Wallerawang Reservoir, New South Wales. Proceedings of Linnean Society of NSW 113, 27–41.
Koehn J., Brumley A., and Gehrke P. (2000). ‘Managing the Impacts of Carp.’ (Bureau of Rural Sciences: Canberra.)

Lampert, W. , Fleckner, W. , Rai, H. , and Taylor, B. E. (1986). Phytoplankton control by grazing zooplankton: A study on the spring clear water phase. Limnology and Oceanography 31, 478–490.
McDowall R. (Ed.) (1996). ‘Freshwater Fishes of South-Eastern Australia.’ (Reed: Sydney.)

Mills, E. L. , Casselman, J. M. , Dermott, R. , Fitzsimons, J. D. , and Gal, G. , et al. (2003). Lake Ontario: food web dynamics in a changing ecosystem (1970–2000). Canadian Journal of Fisheries and Aquatic Sciences 60, 471–490.
Crossref | GoogleScholarGoogle Scholar | Odum E. P. (1971). ‘Fundamentals of Ecology.’ 3rd edn. (Saunders: Philadelphia, PA.)

Reynolds C. S. (1989). Physical determinants of phytoplankton succession. In ‘Plankton Ecology. Succession in Plankton Communities’. (Ed. U. Sommer.) pp. 9–56. (Springer-Verlag: Berlin.)

Reynolds C. S. (1997). ‘Vegetation Processes in the Pelagic: A Model for Ecosystem Theory.’ (Ecology Institute: Oldendorf/Luhe, Germany.)

Rowe, D. K. (1993). Identification of fish responsible for five layers of echoes recorded by high-frequency (200 kHz) echosounding in Lake Rotoiti, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 27, 87–100.
Scherbakov A. P. (1967). ‘Ozero Glubokoe.’ (Nauka: Moscow.) [In Russian]

Smirnov N. N. (Ed.) (1987). ‘Lake Glubokoe. Developments in Hydrobiology, Vol. 36.’ (Series editor: H. J. Dumont.) (Junk Publishers: Dordrecht.)

Sommer, U. , Gliwicz, Z. M. , Lampert, W. , and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106, 433–471.
Vanni M. J., Temte J., Allen Y., Dodds R., Howard P. J., Leavitt P. R., and Luecke C. (1992). Herbivory, nutrients, and phytoplankton dynamics in Lake Mendota, 1987–89. In ‘Food Web Management. A Case Study of Lake Mendota’. (Ed. J. F. Kitchell.) pp. 243–273. (Springer-Verlag: New York.)

Wetzel R. G. (2001). ‘Limnology. Lake and River Ecosystems.’ 3rd edn. (Academic Press: San Diego, CA.)

Wetzel R. G., and Likens G. E. (1991). ‘Limnological Analyses.’ 2nd edn. (Springer-Verlag: New York.)

Yan, N. D. , Girard, R. , and Boudreau, S. (2002). An introduced invertebrate predator (Bythotrephes) reduces zooplankton species richness. Ecology Letters 5, 481–485.
Crossref | GoogleScholarGoogle Scholar |

Yan, N. D. , Keller, W. , Somers, K. M. , Pawson, T. W. , and Girard, R. E. (1996). Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Canadian Journal of Fisheries and Aquatic Sciences 53, 1301–1327.
Crossref | GoogleScholarGoogle Scholar |