Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Induction of metamorphosis in larvae of the brooding corals Acropora palifera and Stylophora pistillata

Andrew H. Baird A C and Aileen N. C. Morse B
+ Author Affiliations
- Author Affiliations

A Centre for Coral Reef Biodiversity, School of Marine Biology & Aquaculture, James Cook University, Townsville, Qld 4811, Australia.

B Marine Biotechnology Center, Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA.

C Corresponding author. Email: ahbaird@sigmaxi.org

Marine and Freshwater Research 55(5) 469-472 https://doi.org/10.1071/MF03121
Submitted: 18 August 2003  Accepted: 23 April 2004   Published: 5 August 2004

Abstract

Many coral larvae require surface contact with crustose red algae (CRA) to induce metamorphosis; however, many features of the ecology of pocilloporid corals, such as their ability to colonize primary substrata, suggest that their larvae respond to different cues. We compared the metamorphosis of larvae of the brooding corals Stylophora pistillata (family Pocilloporidae) and Acropora palifera (family Acroporidae) in response to a variety of environmental cues. Acropora palifera metamorphosed only in the presence of three species of CRA. In contrast, S. pistillata metamorphosed in all assays, except those containing the brown alga Lobophora sp. Metamorphosis was highest (80 ± 20%) in unfiltered sea water; however, metamorphosis also occurred in 0.2-μm filtered sea water. These results suggest that S. pistillata larvae respond to both large and small water-borne molecular cues. The lack of a stringent requirement for surface contact with CRA will allow S. pistillata larvae to pre-empt species that require a more developed fouling community to induce metamorphosis and this feature of larval ecology may be the key to understanding the success of many opportunistic benthic species.

Extra keywords: biofouling, dispersal, recruitment, settlement, succession.


Acknowledgments

This research was funded by a Merit Research Grant to A. H. B. from the Department of Marine Biology, James Cook University, and by NSF Award #OCE-9529730. Generous logistical support from the Department of Marine Biology, James Cook University, to A. N. C. M. is greatly appreciated. We thank Allan Stewart-Oaken for statistical advice, the staff at Orpheus Island Research Station and J. Aumend, G. Codina, C. Murchie, and D. Thomson for field assistance. Comments from V. Harriott, A. Heyward, A. Negri, M. Pratchett, S. Purcell, R. van Woesik and B. Willis greatly improved the manuscript. This is contribution number 202 of the Coral Ecology Group and number 88 of the Centre for Coral Reef Biodiversity at James Cook University.


References

Babcock, R. C. , Baird, A. H. , Piromvaragorn, S. , Thomson, D. P. , and Willis, B. L. (2003). Identification of scleractinian coral recruits from Indo-Pacific reefs. Zoological Studies 42, 211–226.


Baird, A. H. , and Babcock, R. C. (2000). Morphological differences among three species of newly settled pocilloporid coral recruits. Coral Reefs 19, 179–183.


Baird, A. H. , and Hughes, T. P. (2000). Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. Journal of Experimental Marine Biology and Ecology 251, 117–132.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chia, F. S. and  Bickell, L. R. (1978). Mechanisms of larval attachment and the induction of settlement and metamorphosis in coelenterates: a review. In ‘Settlement and Metamorphosis of Marine Invertebrate Larvae’. (Eds. F. S. Chia and M. Rice)  pp. 1–12. (Elsevier: New York.)

Connell, J. H. (1973). Population ecology of reef building corals. In ‘Biology and Geology of Coral Reefs’. (Eds. O. A. Jones and R. Endean)  pp. 205–245. (Academic Press: New York.)

Diaz-Pulido, G. , and McCook, L. J. (2002). The fate of bleached corals: patterns and dynamics of algal recruitment. Marine Ecology Progress Series 232, 115–128.


Grigg, R. W. , and Maragos, R. E. (1974). Recolonization of hermatypic corals on submerged Hawaiian lava flows. Ecology 55, 387–395.


Hadfield, M. G. and  Paul, V. J. (2001). Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In ‘Marine Chemical Ecology’. (Eds. J. B. McClintock and B. J. Baker)  pp. 431–462. (CRC Press: Boca Raton.)

Harrington, L. , Fabricius, K. , De’ath, G. , and Negri, A. P. (2004). Habitat selection determines post settlement survival in corals. Ecology ,(in press)


Harrison, P. L. and  Wallace, C. C. (1990). Reproduction, dispersal and recruitment of scleractinian corals. In ‘Coral Reefs’. (Ed Z. Dubinsky)  pp. 133–207. (Elsevier: Amsterdam.)

Heyward, A. J. , and Negri, A. P. (1999). Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279.
Crossref | GoogleScholarGoogle Scholar |

Hughes, T. P. , Baird, A. H. , Dinsdale, E. A. , Moltschaniwskyj, N. A. , Pratchett, M. S. , Tanner, J. E. , and Willis, B. L. (1999). Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63.
Crossref | GoogleScholarGoogle Scholar |

Hughes, T. P. , Baird, A. H. , Dinsdale, E. A. , Moltschaniwskyj, N. A. , Pratchett, M. S. , Tanner, J. E. , and Willis, B. L. (2000). Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology 81, 2241–2249.


Hughes, T. P. , Baird, A. H. , Dinsdale, E. A. , Harriott, V. J. , Moltschaniwskyj, N. A. , Pratchett, M. S. , Tanner, J. E. , and Willis, B. L. (2002). Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology 83, 436–451.


Jokiel, P. L. (1990). Transport of reef corals into the Great Barrier Reef. Nature 347, 665–667.
Crossref | GoogleScholarGoogle Scholar |

Leitz, T. (1997). Induction of settlement and metamorphosis of Cnidarian larvae: signals and signal transduction. Invertebrate Reproduction & Development 31, 1–3.


Loya, Y. (1976). The Red Sea coral Stylophora pistillata is an r-strategist. Nature 259, 478–480.


Maniwavie, T. , Rewald, J. , Aitsi, J. , Wagner, T. P. , and Munday, P. L. (2001). Recovery of corals after volcanic eruptions in Papua New Guinea. Coral Reefs 20, 24.
Crossref | GoogleScholarGoogle Scholar |

Morse, A. N. C. , Iwao, K. , Baba, M. , Shimoike, K. , Hayashibara, T. , and Omori, M. (1996). An ancient chemosensory mechanism brings new life to coral reefs. The Biological Bulletin 191, 149–154.


Morse, D. E. (1990). Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bulletin of Marine Science 46, 465–483.


Morse, D. E. , and Morse, A. N. C. (1991). Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. The Biological Bulletin 181, 104–122.


Morse, D. E. , Hooker, N. , Morse, A. N. C. , and Jensen, R. A. (1988). Control of larval metamorphosis and recruitment in sympatric agariciid corals. Journal of Experimental Marine Biology and Ecology 116, 193–217.
Crossref | GoogleScholarGoogle Scholar |

Negri, A. P. , Webster, N. S. , Hill, R. T. , and Heyward, A. J. (2001). Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Marine Ecology Progress Series 223, 121–131.


Raimondi, P. T. , and Morse, A. N. C. (2000). The consequences of complex larval behavior in a coral. Ecology 81, 3193–3211.


Scheltema, R. S. (1974). Biological interactions determining larval settlement of marine invertebrates. Thalassia Jugoslavica 10, 263–296.


Steinberg, P. D. , De Nys, R. , and Kjelleberg, S. (1998). Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12, 227–244.


Steinberg, P. D., De Nys, R. and  Kjelleberg, S. (2001). Chemical mediation of surface colonisation. In ‘Marine Chemical Ecology’. (Eds. J. B. McClintock and B. J. Baker)  pp. 355–388. (CRC Press: Boca Raton.)

Van Moorsel, G. W. N. M. (1988). Early maximum growth of stony corals (Scleractinia) after settlement on artificial substrata on a Caribbean reef. Marine Ecology Progress Series 50, 127–135.