Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Engineering biological nitrogen removal in wastewater treatment via the control of nitrite oxidising bacteria using free nitrous acid

Andrew Elohim Laloo A B and Philip L Bond A
+ Author Affiliations
- Author Affiliations

A Advanced Water Management Centre, University of Queensland, Brisbane, Qld, Australia

B Email: a.laloo@awmc.uq.edu.au

Microbiology Australia 39(1) 47-49 https://doi.org/10.1071/MA18012
Published: 21 February 2018

Abstract

Nitrogen compounds need to be removed or captured from wastewater streams before disposal to protect our aquatic environments from eutrophication. Particular bacteria facilitating the biological removal of nitrogen during wastewater treatment include ammonia oxidising bacteria (AOB), nitrite oxidising bacteria (NOB), denitrifiers, as well as anaerobic ammonium oxidising (Anammox) bacteria. Manipulating these microbial communities can improve efficiency in nitrogen removal. Bypassing nitrate production by selectively inhibiting NOB reduces the need for oxygen and the addition of external carbon for the nitrogen removal. Various approaches to selectively inhibit NOB in the nitrification process are available. Here we present an approach using the biocide, free nitrous acid (FNA) to selectively suppress NOB growth thereby improving the efficiency of the nitrogen removal process.


References

[1]  Schmidt, I. et al. (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 27, 481–492.
New concepts of microbial treatment processes for the nitrogen removal in wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFShur4%3D&md5=370fe31fb9eaa40b623b511fd295d817CAS |

[2]  Peng, Y. and Zhu, G. (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 73, 15–26.
Biological nitrogen removal with nitrification and denitrification via nitrite pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSnsLnN&md5=32f96d350510d7283f355586474369cdCAS |

[3]  Zhu, G. et al. (2008) Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 192, 159–195.
Biological removal of nitrogen from wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGgtrnF&md5=458ab00f58e60c3494221d3a165c4c80CAS |

[4]  Lackner, S. et al. (2014) Full-scale partial nitritation/anammox experiences--an application survey. Water Res. 55, 292–303.
Full-scale partial nitritation/anammox experiences--an application survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFSrsbc%3D&md5=7dc34dd5235f46220a1206e0042f0ba5CAS |

[5]  Wang, D. et al. (2016) Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci. Rep. 6, 25547.
Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsV2hs7k%3D&md5=8ef388943bf7ef24e35162080fe396bdCAS |

[6]  Kuenen, J.G. (2008) Anammox bacteria: from discovery to application. Nat. Rev. Microbiol. 6, 320–326.
Anammox bacteria: from discovery to application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Cqur4%3D&md5=a9e141050244c205a87c8bd1aec11d52CAS |

[7]  Ma, B. et al. (2015) Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Sci. Rep. 5, 13048.
Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen.Crossref | GoogleScholarGoogle Scholar |

[8]  Zhou, Y. et al. (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res. 45, 4672–4682.
The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1alu74%3D&md5=10f69aefb567d3b97807d4a5c41f6b90CAS |

[9]  Gao, S.H. et al. (2016) Determining multiple responses of Pseudomonas aeruginosa PAO1 to an antimicrobial agent, free nitrous acid. Environ. Sci. Technol. 50, 5305–5312.
Determining multiple responses of Pseudomonas aeruginosa PAO1 to an antimicrobial agent, free nitrous acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xmsl2rs7g%3D&md5=7e196e14ede945a1023f08453a729a03CAS |

[10]  Wang, Q. et al. (2014) Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res. 55, 245–255.
Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFWitLc%3D&md5=37022b460b2d4d30d28b9b0d8fc1d8f3CAS |

[11]  Gao, S.H. et al. (2016) Antimicrobial effects of free nitrous acid on Desulfovibrio vulgaris: implications for sulfide-induced corrosion of concrete. Appl. Environ. Microbiol. 82, 5563–5575.
Antimicrobial effects of free nitrous acid on Desulfovibrio vulgaris: implications for sulfide-induced corrosion of concrete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVOgtL4%3D&md5=0d0fc76ad3c2beb219574d6bd92bc236CAS |

[12]  Cantera, J.J. and Stein, L.Y. (2007) Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ. Microbiol. 9, 765–776.
Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria.Crossref | GoogleScholarGoogle Scholar |

[13]  Laloo, A. et al. (2017) Quantitative SWATH-MS metaproteomics reveal mechanism of tolerance of ammonia oxidising bacteria to the biocide Free Nitrous Acid. Australian Microbial Ecology Conference, Melbourne.