Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Modulation of the rumen microbiome

Rosalind Gilbert A B D , Diane Ouwerkerk A B E and Athol Klieve B C F
+ Author Affiliations
- Author Affiliations

A Rumen Ecology Unit, Department of Agriculture and Fisheries, Level 2A East, EcoSciences Precinct, Dutton Park, Qld 4102, Australia

B Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Qld 4067, Australia

C School of Agriculture and Food Sciences, University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia

D Corresponding author. Tel: +61 7 3255 4289, Email: Ros.Gilbert@daff.qld.gov.au

E Tel: + 61 7 3255 4291, Email: Diane.Ouwerkerk@daff.qld.gov.au

F Tel: +61 7 5460 1255, Email: a.klieve@uq.edu.au

Microbiology Australia 36(1) 18-21 https://doi.org/10.1071/MA15006
Published: 6 March 2015

Abstract

A combination of animal genetics and the unique, enlarged fore-stomach of ruminants (rumen) enable domesticated ruminants to be sustained on forages and fibrous feedstuffs that would be otherwise indigestible. Ruminants can also utilise more easily digestible, high energy plant material such as grain, to achieve rapid increases in weight gain, muscle bulk and in the case of dairy cows, high milk yields. Since the mid-1900s there has been a steady research effort into understanding the digestive processes of ruminants, striving to maintain animal health and nutrition whilst maximising the productivity and environmental sustainability of livestock production systems. This article describes strategies developed to modulate the rumen microbial ecosystem, enabling the utilisation of plant feedstuffs that may otherwise be toxic and enhancing feed utilisation efficiency or controlling populations of specific rumen microbes, such as those contributing to lactic acidosis and enteric methane emissions. It also traces advances in technologies that have enabled us to understand the underlying biological mechanisms involved in the modulation of the rumen microbiome.


References

[1]  Bryant, M.P. (1959) Bacterial species in the rumen. Bacteriol. Rev. 23, 125–153.
| 1:STN:280:DyaF3c7isFylsw%3D%3D&md5=d0b20a91877a404bf86853a8f7836ffeCAS | 13805451PubMed |

[2]  Hungate, R.E. et al. (1964) The rumen bacteria and protozoa. Annu. Rev. Microbiol. 18, 131–166.
The rumen bacteria and protozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXitl2qsw%3D%3D&md5=5ba1cf060e6748eb3e1b2e4ecea44bccCAS | 14268853PubMed |

[3]  Orpin, C.G. (1975) Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 91, 249–262.
Studies on the rumen flagellate Neocallimastix frontalis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2Fps1Ghuw%3D%3D&md5=3d253e3da1afcb68141aa47a9514b3deCAS |

[4]  Moon-van der Staay, S.Y. et al. (2014) The symbiotic intestinal ciliates and the evolution of their hosts. Eur. J. Protistol. 50, 166–173.
The symbiotic intestinal ciliates and the evolution of their hosts.Crossref | GoogleScholarGoogle Scholar | 24703617PubMed |

[5]  Williams, A.G. (1986) Rumen holotrich ciliate protozoa. Microbiol. Rev. 50, 25–49.
| 1:CAS:528:DyaL28Xhs1CrtLs%3D&md5=083f396addadfb0c59348d7fd986866fCAS | 3083220PubMed |

[6]  Klieve, A.V. and Bauchop, T. (1988) Morphological diversity or ruminal bacteriophages from sheep and cattle. Appl. Environ. Microbiol. 54, 1637–1641.
| 1:STN:280:DyaL1czisFertA%3D%3D&md5=f6d648b35cbaa636f9f13df7c1df55baCAS | 3415230PubMed |

[7]  Owens, F.N. et al. (1997) The effect of grain source and grain processing on performance of feedlot cattle: A review. J. Anim. Sci. 75, 868–879.
| 1:CAS:528:DyaK2sXitVeiurs%3D&md5=a9844168b19ee59aec57ca1bbfbe726fCAS | 9078507PubMed |

[8]  Yang, W.Z. et al. (2001) Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 84, 2203–2216.
Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvV2ksL4%3D&md5=d50725c0e3dc9566f95870d70a3c1f34CAS | 11699452PubMed |

[9]  Yang, W.Z. et al. (2013) Quality and precision processing of barley grain affected intake and digestibility of dry matter in feedlot steers. Can. J. Anim. Sci. 93, 251–260.
Quality and precision processing of barley grain affected intake and digestibility of dry matter in feedlot steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyhurfI&md5=7a12c9c6963a825d7c5d2dddd3249e16CAS |

[10]  Beauchemin, K.A. et al. (2003) Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. J. Dairy Sci. 86, 630–643.
Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslClt7w%3D&md5=a3d1d2b3295a602c76d6d44492964942CAS | 12647969PubMed |

[11]  Koenig, K. and Beauchemin, K. (2011) Optimum extent of barley grain processing and barley silage proportion in feedlot cattle diets: growth, feed efficiency, and fecal characteristics. Can. J. Anim. Sci. 91, 411–422.
Optimum extent of barley grain processing and barley silage proportion in feedlot cattle diets: growth, feed efficiency, and fecal characteristics.Crossref | GoogleScholarGoogle Scholar |

[12]  Zhao, Y.L. et al. (2015) Effects of volume weight, processing method and processing index of barley grain on in situ digestibility of dry matter and starch in beef heifers. Anim. Feed Sci. Technol. 199, 93–103.
Effects of volume weight, processing method and processing index of barley grain on in situ digestibility of dry matter and starch in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCnt7vF&md5=1b1cbfba5bb9429c85e38426cebe0b4eCAS |

[13]  Rogers, G.M. et al. (2002) Feeding cotton products to cattle. Vet. Clin. North Am. Food Anim. Pract. 18, 267–294.
Feeding cotton products to cattle.Crossref | GoogleScholarGoogle Scholar | 12235661PubMed |

[14]  Holman, B.W.B. and Malau-Aduli, A.E.O. (2013) Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr. (Berl.) 97, 615–623.
Spirulina as a livestock supplement and animal feed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVersLnF&md5=c2007ca12fbf9475c9a3a34afb83a67eCAS |

[15]  Panjaitan, T. et al. (2010) Effect of the concentration of Spirulina (Spirulina platensis) algae in the drinking water on water intake by cattle and the proportion of algae bypassing the rumen. Anim. Prod. Sci. 50, 405–409.
Effect of the concentration of Spirulina (Spirulina platensis) algae in the drinking water on water intake by cattle and the proportion of algae bypassing the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1yrsL4%3D&md5=faccbbf2416faa7f88514c997d72a307CAS |

[16]  Allison, M.J. et al. (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst. Appl. Microbiol. 15, 522–529.
Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFWhsrY%3D&md5=1581fe89b2c834d6a75f2f0cd23a2bd2CAS |

[17]  Klieve, A.V. et al. (2002) The production and storage of a fermentor-grown bacterial culture containing Synergistes jonesii, for protecting cattle against mimosine and 3-hydroxy-4(1H)-pyridone toxicity from feeding on Leucaena leucocephala. Aust. J. Agric. Res. 53, 1–5.
The production and storage of a fermentor-grown bacterial culture containing Synergistes jonesii, for protecting cattle against mimosine and 3-hydroxy-4(1H)-pyridone toxicity from feeding on Leucaena leucocephala.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVGrtL4%3D&md5=dcab87797c65bf423c9378498fd3a89eCAS |

[18]  Takenaka, A. et al. (2004) Fiber digestion by rumen ciliate protozoa. Microbes Environ. 19, 203–210.
Fiber digestion by rumen ciliate protozoa.Crossref | GoogleScholarGoogle Scholar |

[19]  Hristov, A.N. et al. (2003) Evaluation of several potential bioactive agents for reducing protozoal activity in vitro. Anim. Feed Sci. Technol. 105, 163–184.
Evaluation of several potential bioactive agents for reducing protozoal activity in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12msrg%3D&md5=18ea560be2f816398a7899bc1079803dCAS |

[20]  Williams, Y.J. et al. (2014) Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen. J. Anim. Sci. 92, 5757–5761.
Technical note: Protozoa-specific antibodies raised in sheep plasma bind to their target protozoa in the rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtV2gsrc%3D&md5=92ed9b62b3c9c6eb7d729584ceb841f9CAS | 25414113PubMed |

[21]  Newbold, C.J. and Wallace, R.J. (1988) Effects of the ionophores monensin and tetronasin on simulated development of ruminal lactic acidosis in vitro. Appl. Environ. Microbiol. 54, 2981–2985.
| 1:CAS:528:DyaL1MXlsVamsA%3D%3D&md5=1f1839bae0e6f027d3b213d8b3dd96c9CAS | 3223764PubMed |

[22]  Tarakanov, B.V. (1994) Regulation of microbial processes in the rumen by bacteriophages of Streptococcus bovis. Microbiol. 63, 373–378. (translated from Mikrobiologiya 363, 657–667).

[23]  Calsamiglia, S. et al. (2012) Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Anim. Feed Sci. Technol. 172, 42–50.
Is subacute ruminal acidosis a pH related problem? Causes and tools for its control.Crossref | GoogleScholarGoogle Scholar |

[24]  Newbold, C.J. and Hillman, K. (2004) Feed Supplements: Enzymes, probiotics, yeasts. In Encyclopedia of Animal Science (Pond, W.G., ed), pp. 376–378, CRC Press.

[25]  Krause, K.M. and Oetzel, G.R. (2006) Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Anim. Feed Sci. Technol. 126, 215–236.
Understanding and preventing subacute ruminal acidosis in dairy herds: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Orurs%3D&md5=b44001f027a457bcc19d45e395946f82CAS |

[26]  Klieve, A.V. et al. (2012) Persistence of orally administered Megasphaera elsdenii and Ruminococcus bromii in the rumen of beef cattle fed a high grain (barley) diet. Anim. Prod. Sci. 52, 297–304.
Persistence of orally administered Megasphaera elsdenii and Ruminococcus bromii in the rumen of beef cattle fed a high grain (barley) diet.Crossref | GoogleScholarGoogle Scholar |

[27]  Styriak, I. et al. (1994) Isolation and characterisation of a new ruminal bacteriophage lytic to Streptococcus bovis. Curr. Microbiol. 28, 355–358.
Isolation and characterisation of a new ruminal bacteriophage lytic to Streptococcus bovis.Crossref | GoogleScholarGoogle Scholar |

[28]  St-Pierre, B. and Wright, A.D.G. (2013) Diversity of gut methanogens in herbivorous animals. Animal 7, 49–56.
Diversity of gut methanogens in herbivorous animals.Crossref | GoogleScholarGoogle Scholar | 22717175PubMed |

[29]  Buddle, B.M. et al. (2011) Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Vet. J. 188, 11–17.
Strategies to reduce methane emissions from farmed ruminants grazing on pasture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Sgt7k%3D&md5=f6cae4de6d6cc2667e2d5201466035feCAS | 20347354PubMed |

[30]  Cottle, D.J. et al. (2011) Ruminant enteric methane mitigation: a review. Anim. Prod. Sci. 51, 491–514.
Ruminant enteric methane mitigation: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGisLY%3D&md5=e14e0d7fe6b368bd7d9c2425f768f0baCAS |

[31]  Krause, D.O. et al. (2013) Board-invited review: rumen microbiology: leading the way in microbial ecology. J. Anim. Sci. 91, 331–341.
Board-invited review: rumen microbiology: leading the way in microbial ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFKiu7Y%3D&md5=9c94c3db1694592ac71af6277a511a4fCAS | 23404990PubMed |

[32]  Williams, Y.J. et al. (2009) A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 75, 1860–1866.
A vaccine against rumen methanogens can alter the composition of archaeal populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFWlsb0%3D&md5=e2c906159b85c18947fa66df3e5eee82CAS | 19201957PubMed |

[33]  Callaway, T. et al. (2012) Current status of practical applications: probiotics in dairy cattle. In Direct-Fed Microbials and Prebiotics for Animals (Callaway, T.R. and Ricke, S.C., eds), pp. 121–135, Springer, New York.

[34]  Pinloche, E. et al. (2013) The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE 8, e67824.
The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGru7jO&md5=bbd4393108eba72abc9eeeb484d72756CAS | 23844101PubMed |

[35]  AlZahal, O. et al. (2014) Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle. J. Dairy Sci. 97, 7102–7114.
Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslyrurvL&md5=f7894b8ee03eff4a88f733253a1cc547CAS | 25218748PubMed |

[36]  Yeoman, C.J. and White, B.A. (2014) Gastrointestinal tract microbiota and probiotics in production animals. Ann. Rev. Anim. Biosci. 2, 469–486.
Gastrointestinal tract microbiota and probiotics in production animals.Crossref | GoogleScholarGoogle Scholar |

[37]  McAllister, T.A. et al. (2011) Review: the use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91, 193–211.
Review: the use of direct fed microbials to mitigate pathogens and enhance production in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCqs7Y%3D&md5=7ace2b3a6a29d5d339f8cd10182670c6CAS |

[38]  Newbold, C.J. and Hillman, K. (2004) Feed Supplements: enzymes, probiotics, yeasts. In Encyclopedia of Animal Science (Pond, W.G., ed), pp. 376–378, CRC Press.

[39]  Klieve, A.V. et al. (2003) Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 95, 621–630.
Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svks1egsQ%3D%3D&md5=500f796b8a8118d81c9bacde75c6ddedCAS | 12911711PubMed |

[40]  Russell, J.B. and Rychlik, J.L. (2001) Factors that alter rumen microbial ecology. Science 292, 1119–1122.
Factors that alter rumen microbial ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Chur8%3D&md5=6ea617b9c1b8d4faa453a31b636e1614CAS | 11352069PubMed |

[41]  Lima, F.S. et al. (2015) Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl. Environ. Microbiol. 81, 1327–1337.
Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Orsrc%3D&md5=ac8f2ddccfa67123d89299742f0b22eeCAS |

[42]  Hess, M. et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467.
Metagenomic discovery of biomass-degrading genes and genomes from cow rumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2mtA%3D%3D&md5=296657f3d7729d72d8bf1833f4c6c59cCAS | 21273488PubMed |