Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Wastewater, wheat and table wipes: adventures in culture-independent microbiology

Jacob E Munro A , Deborah J Rich A , Simon Dingsdag A and Nicholas V Coleman A B
+ Author Affiliations
- Author Affiliations

A School of Molecular Bioscience
Building G08, University of Sydney
Darlington, NSW 2006, Australia.

B Corresponding author. Tel: +61 2 9351 6047
Fax: +61 2 9351 5858
Email: nicholas.coleman@sydney.edu.au

Microbiology Australia 35(4) 188-191 https://doi.org/10.1071/MA14061
Published: 30 October 2014

Abstract

The sequencing of ribosomal RNA and DNA (rRNA/rDNA) from environmental samples heralded a new age in microbiology13. The advent of next-generation sequencing supercharged these methods, which now give high-resolution data sets, enabling real insights into microbial diversity and function in complex systems47. Here, three local applications of 16S rDNA pyrosequencing are described, which highlight the usefulness of this approach for addressing practical questions in diverse areas of microbiology. Limitations of the sequence-based approach will also be discussed.


References

[1]  Pace, N.R. (1997) A molecular view of microbial diversity and the biosphere. Science 276, 734–740.
A molecular view of microbial diversity and the biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFOltLc%3D&md5=eb1cf8c1be37b8a8462756d70f82cbadCAS | 9115194PubMed |

[2]  Ward, D.M. et al. (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. In Advances in Microbial Ecology (Marshall, K.C., ed), pp. 219–286, Plenum Press, New York, NY, USA; London, England, UK.

[3]  Barns, S.M. et al. (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring. Proc. Natl. Acad. Sci. USA 91, 1609–1613.
Remarkable archaeal diversity detected in a Yellowstone National Park hot spring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFanurw%3D&md5=da877e49faf7c35d9a415d3933d8dd68CAS | 7510403PubMed |

[4]  Lauber, C.L. et al. (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.
Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtrjJ&md5=67ea04b9c9a01e748192981392af7cf2CAS | 19502440PubMed |

[5]  Acosta-Martínez, V. et al. (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 40, 2762–2770.
Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use.Crossref | GoogleScholarGoogle Scholar |

[6]  Koenig, J.E. et al. (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108, 4578–4585.
Succession of microbial consortia in the developing infant gut microbiome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVCkurs%3D&md5=c35f4c18218146dd71f657ab1bb30c7cCAS | 20668239PubMed |

[7]  Tas, N. et al. (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919.
Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWksr7P&md5=3a6b0bc8774cd3d9dcb965670e52b368CAS | 24722629PubMed |

[8]  Hunt, D.E. et al. (2013) Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl. Environ. Microbiol. 79, 177–184.
Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVKjsLs%3D&md5=9b3781817a95f8b966791110864e20adCAS | 23087033PubMed |

[9]  Rattner, B.A. (2009) History of wildlife toxicology. Ecotoxicology 18, 773–783.
History of wildlife toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeksrnJ&md5=dc0f9cb13bbaf572f76de82f33022065CAS | 19533341PubMed |

[10]  Bleecker, A.B. and Kende, H. (2000) Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16, 1–18.
Ethylene: a gaseous signal molecule in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpvFOj&md5=cedcae7da60de455d4583e3f3d43dcf0CAS | 11031228PubMed |

[11]  de Bont, J.A. (1976) Oxidation of ethylene by soil bacteria. Antonie van Leeuwenhoek 42, 59–71.
Oxidation of ethylene by soil bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktlSgsbs%3D&md5=527d6c8e6d52588e289e946d26053f5aCAS | 1085129PubMed |

[12]  Fukuda, H. et al. (1993) Ethylene production by micro-organisms. Adv. Microb. Physiol. 35, 275–306.
Ethylene production by micro-organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslOrsbw%3D&md5=438bcb8cb9ab67446be4259e02bc0011CAS | 8310882PubMed |

[13]  Mattes, T.E. et al. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol. Rev. 34, 445–475.
| 1:CAS:528:DC%2BC3cXosFChsbw%3D&md5=ee6f00da34f8d48aa2b4efb96cfbc8beCAS | 20146755PubMed |

[14]  Coleman, N.V. and Spain, J.C. (2003) Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl. Environ. Microbiol. 69, 6041–6046.
Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlKjsrg%3D&md5=432b918ef79065b8b722fa7c522b1df8CAS | 14532060PubMed |

[15]  Fine, P.E.M. (1995) Variation in protection by BCG – implications of and for hetrologous immunity. Lancet 346, 1339–1345.
Variation in protection by BCG – implications of and for hetrologous immunity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FmsV2nsg%3D%3D&md5=00d90182dc6f57d0d1ae9c5aabae7fb1CAS |

[16]  Lowry, C.A. et al. (2007) Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior. Neuroscience 146, 756–772.
Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslajtbg%3D&md5=c70f4a00c6ca8382898849d1d3001194CAS | 17367941PubMed |

[17]  Raison, C.L. et al. (2010) Inflammation, sanitation, and consternation loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch. Gen. Psychiatry 67, 1211–1224.
Inflammation, sanitation, and consternation loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFyquw%3D%3D&md5=1ac603380fa7e748c7a7f5890f30f403CAS | 21135322PubMed |

[18]  Giovannoni, S.J. et al. (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584–3592.
| 1:STN:280:DyaL1c3pvVKlug%3D%3D&md5=df7c6879701407778acab1483d061abfCAS | 3136142PubMed |

[19]  Dingsdag, S. and Coleman, N.V. (2013) Bacterial communities on food court tables and cleaning equipment in a shopping mall. Epidemiol. Infect. 141, 1647–1651.
Bacterial communities on food court tables and cleaning equipment in a shopping mall.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bos1GktA%3D%3D&md5=0a545b8d8b6a24068ec70fc8d2f88a0eCAS | 22995219PubMed |

[20]  Kampfer, P. et al. (1996) Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb. Ecol. 32, 101–121.
Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes.Crossref | GoogleScholarGoogle Scholar | 8688004PubMed |

[21]  Hong, S.H. et al. (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J. 3, 1365–1373.
Polymerase chain reaction primers miss half of rRNA microbial diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGru7zF&md5=63d954b58b9f30b2b37117aed7f5a37dCAS |

[22]  Pinto, A.J. and Raskin, L. (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE 7, e43093.
PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ejtb7L&md5=4c107bd9b7d4dd3732b11208bb25934eCAS | 22905208PubMed |

[23]  Haas, B.J. et al. (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504.
Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1aisbc%3D&md5=bc38adbbe6e29dd6df4f0f92ee79f8ebCAS | 21212162PubMed |

[24]  Martin-Laurent, F. et al. (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359.
DNA extraction from soils: old bias for new microbial diversity analysis methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGmsLg%3D&md5=9fb876700e13990ffc91e72d6e408652CAS | 11319122PubMed |

[25]  Terrat, S. et al. (2012) Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb. Biotechnol. 5, 135–141.
Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKmtb0%3D&md5=1be9e2d3ce62092dc3834be5d8a0484dCAS | 21989224PubMed |

[26]  Lombard, N. et al. (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol. Ecol. 78, 31–49.
Soil-specific limitations for access and analysis of soil microbial communities by metagenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CitLvO&md5=559223b2bc51ec4462def3590ece9c8dCAS | 21631545PubMed |

[27]  Young, J.M. et al. (2014) Limitations and recommendations for successful DNA extraction from forensic soil samples: A review. Sci. Justice 54, 238–244.
Limitations and recommendations for successful DNA extraction from forensic soil samples: A review.Crossref | GoogleScholarGoogle Scholar | 24796953PubMed |

[28]  Lee, C.K. et al. (2012) Groundtruthing next-gen sequencing for microbial ecology – biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS ONE 7, e44224.
Groundtruthing next-gen sequencing for microbial ecology – biases and errors in community structure estimates from PCR amplicon pyrosequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCitrvK&md5=0623394bab71d8111dd20a78c83e40b2CAS | 22970184PubMed |

[29]  Tedersoo, L. et al. (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol. 188, 291–301.
454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aqsLfK&md5=b449e3549a3e8a9d0dade7a8558375adCAS | 20636324PubMed |

[30]  Gomez-Alvarez, V. et al. (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J. 3, 1314–1317.
Systematic artifacts in metagenomes from complex microbial communities.Crossref | GoogleScholarGoogle Scholar | 19587772PubMed |

[31]  Delmont, T.O. et al. (2013) Mastering methodological pitfalls for surviving the metagenomic jungle. Bioessays 35, 744–754.
Mastering methodological pitfalls for surviving the metagenomic jungle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFemsr7N&md5=e8326d088bf006c6b97006688802eaf3CAS | 23757040PubMed |