Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Do pathogens contribute to multiple sclerosis aetiology?

David Booth
+ Author Affiliations
- Author Affiliations

Institute for Immunology and Allergy Research
Westmead Millennium Institute
University of Sydney
Darcy Road, Westmead
NSW 2145, Australia
Tel: +61 2 9845 8498
Fax: +61 2 9891 3889
Email: david.booth@sydney.edu.au

Microbiology Australia 34(3) 144-146 https://doi.org/10.1071/MA13048
Published: 4 September 2013

Abstract

Multiple sclerosis (MS) is a common neurological disease characterised by sclerotic plaques of dead and dying oligodendrocytes and neurons in the central nervous system. Infectious agents may cause or contribute to this cell death, but none have yet been established as doing so. Now the recent dramatic advances in identifying the genetic risk factors for MS have provided some tantalising leads to microbe involvement. If conclusive evidence is found, vaccines, antivirals/antibiotics or pathogens themselves may prove useful therapeutics.


References

[1]  Compston, A. and Coles, A. (2008) Multiple sclerosis. Lancet 372, 1502–1517.
Multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gtLvN&md5=6eb26b8814e57f610c9e82202d4ed3a5CAS | 18970977PubMed |

[2]  International Multiple Sclerosis Genetics Consortium (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 21833088PubMed |

[3]  McCauley J. and International Multiple Sclerosis Genetics Consortium (2012) Immunochip: redefining the genetic architecture of multiple sclerosis (abstract 151). Presented at the 62nd Annual Meeting of The American Society of Human Genetics, San Francisco, California.

[4]  Kivity, S. et al. (2009) Infections and autoimmunity – friends or foes? Trends Immunol. 30, 409–414.
Infections and autoimmunity – friends or foes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Wqu74%3D&md5=94b8148fc9aa0e66eabe0499a5962366CAS | 19643667PubMed |

[5]  Kurtzke, J.F. and Heltberg, A. (2001) Multiple sclerosis in the Faroe Islands: an epitome. J. Clin. Epidemiol. 54, 1–22.
Multiple sclerosis in the Faroe Islands: an epitome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7lsFaltg%3D%3D&md5=53e57e6c1dc016c205a54d800b802a5fCAS | 11165464PubMed |

[6]  Pender, M.P. (2012) CD8+ T-cell deficiency, Epstein-Barr virus infection, vitamin D deficiency, and steps to autoimmunity: a unifying hypothesis. Autoimmune Dis. , 189096.
| 22312480PubMed |

[7]  Waubant, E. et al. (2011) Common viruses associated with lower pediatric multiple sclerosis risk. Neurology 76, 1989–1995.
Common viruses associated with lower pediatric multiple sclerosis risk.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjgvV2guw%3D%3D&md5=4432a1c2f189c961cf3413806b16376eCAS | 21646624PubMed |

[8]  Pakpoor, J. et al. (2013) Epstein–Barr virus and multiple sclerosis: association or causation? Expert Rev. Neurother. 13, 287–297.
Epstein–Barr virus and multiple sclerosis: association or causation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlGru7w%3D&md5=fe11bd0dc79777c172491e77cb93c8edCAS | 23448218PubMed |

[9]  Tselis, A. (2012) Epstein–Barr virus cause of multiple sclerosis. Curr. Opin. Rheumatol. 24, 424–428.
Epstein–Barr virus cause of multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 22617821PubMed |

[10]  Lünemann, J.D. et al. (2008) EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2. J. Exp. Med. 205, 1763–1773.
EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2.Crossref | GoogleScholarGoogle Scholar | 18663124PubMed |

[11]  Lünemann, J.D. et al. (2008) Broadened and elevated humoral immune response to EBNA1 in pediatric multiple sclerosis. Neurology 71, 1033–1035.
Broadened and elevated humoral immune response to EBNA1 in pediatric multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 18809840PubMed |

[12]  Levin, L.I. et al. (2010) Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Ann. Neurol. 67, 824–830.
| 20517945PubMed |

[13]  De Jager, P.L. et al. (2008) Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 70, 1113–1118.
Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlKju7g%3D&md5=420c530c4a6ec1f4bac9ac1ea168e3afCAS | 18272866PubMed |

[14]  Virtanen, J. et al. (2013) Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult. Scler. , .
Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings.Crossref | GoogleScholarGoogle Scholar | 23722324PubMed |

[15]  Ogembo, J.G. et al. (2013) Human complement receptor type 1/CD35 is an Epstein–Barr virus receptor. Cell Rep. 3, 371–385.
Human complement receptor type 1/CD35 is an Epstein–Barr virus receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1Olt70%3D&md5=6ebbb3bd1fdea0a31f457d5a17b241e4CAS | 23416052PubMed |

[16]  Gandhi, K.S. et al. (2010) The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. Hum. Mol. Genet. 19, 2134–2143.
The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWktro%3D&md5=b60fe350b3bdbbc94bb1e0acae7689e8CAS | 20190274PubMed |

[17]  Cohen, J.I. et al. (2011) Characterization and treatment of chronic active Epstein–Barr virus disease: a 28-year experience in the United States. Blood 117, 5835–5849.
Characterization and treatment of chronic active Epstein–Barr virus disease: a 28-year experience in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsl2nur8%3D&md5=35de620d6e18152268a9598825497720CAS | 21454450PubMed |

[18]  Buzzard, K.A. et al. (2012) What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis? Int. J. Mol. Sci. 13, 12 665–12 709.
What do effective treatments for multiple sclerosis tell us about the molecular mechanisms involved in pathogenesis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaqtbjE&md5=d2d1d67475f00e1482ac6eb9bacd39bfCAS |

[19]  Carlsson, B. et al. (2009) The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 norovirus infection. PLoS ONE 4, e5593.
The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 norovirus infection.Crossref | GoogleScholarGoogle Scholar | 19440360PubMed |

[20]  Smyth, D.J. et al. (2011) FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60, 3081–3084.
FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyis7zN&md5=6cf80569daacea7899e27368290bb059CAS | 22025780PubMed |

[21]  Mauri, D.N. et al. (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8, 21–30.
LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXptVOjsg%3D%3D&md5=9cf1f83a02f3a76facbd281a06564320CAS | 9462508PubMed |

[22]  Erlenhoefer, C. et al. (2001) CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J. Virol. 75, 4499–4505.
CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3it1ejsQ%3D%3D&md5=53ef963c091dd8e249aef8c3828b4395CAS | 11312320PubMed |

[23]  Chinnakannan, S.K. et al. (2013) Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways. PLoS ONE 8, e57063.
Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsF2jsrs%3D&md5=713e8d64056bbe48e66589a7ebed568dCAS | 23431397PubMed |

[24]  Raj, T. et al. (2013) Common risk alleles for inflammatory diseases are targets of recent positive selection. Am. J. Hum. Genet. 92, 517–529.
Common risk alleles for inflammatory diseases are targets of recent positive selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFyjsLo%3D&md5=8fb49781af5a13cea977f71383801c17CAS | 23522783PubMed |

[25]  Hewer, S. et al. (2013) Vitamin D and multiple sclerosis. J. Clin. Neurosci. 20, 634–641.
Vitamin D and multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVemu7g%3D&md5=8ae4a92c2ebf3dd0a0b839a2f5983669CAS | 23540892PubMed |

[26]  Muehleisen, B. et al. (2012) PTH/PTHrP and vitamin D control antimicrobial peptide expression and susceptibility to bacterial skin infection. Sci Transl Med. 4, 135ra66.
PTH/PTHrP and vitamin D control antimicrobial peptide expression and susceptibility to bacterial skin infection.Crossref | GoogleScholarGoogle Scholar | 22623742PubMed |

[27]  Loebermann, M. et al. (2012) Vaccination against infection in patients with multiple sclerosis. Nat Rev Neurol. 8, 143–151.
Vaccination against infection in patients with multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Ckt74%3D&md5=048e759bfc5716e4c7fbeec6d278062fCAS | 22270022PubMed |

[28]  Hasseldam, H. et al. (2013) Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis. Parasite Immunol. 35, 103–108.
Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Wnsb4%3D&md5=d524121e7229ae6d607cdfc802cba443CAS | 23227936PubMed |