Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Bacteriophage therapy

Kate Hodgson
+ Author Affiliations
- Author Affiliations

School of Pharmacy & Medical Sciences
Division of Health Sciences
University of South Australia
Adelaide, SA 5000, Australia
Tel: +61 8 8302 1374
Email: hodkr002@mymail.unisa.edu.au

Microbiology Australia 34(1) 28-31 https://doi.org/10.1071/MA13009
Published: 20 March 2013

Abstract

Bacteriophages (phages) are viruses that infect only bacteria. They exhibit one of two types of life cycle; lytic (virulent) or lysogenic (temperate). They are non-toxic to other organisms, infecting, and in the case of lytic phages, multiplying rapidly within the bacterial host, ultimately killing it. Lysogenic phages can remain in a quiescent state where the genome is integrated into the bacterial chromosome or exist as a plasmid. Some enhance bacterial virulence by encoding genes for toxins or antibiotic resistance. Lytic phages are preferred for therapy as lysogenic phages may not result in host death and can transfer undesirable genes through transduction. The history of prophylactic and therapeutic use of phages since their discovery over 90 years ago by d’Herelle (1917) and Twort (1915) are outlined in comprehensive reviews by Sulakvelidze et al., Merril and Hanlon. Inconsistent and unreliable results combined with the discovery of antibiotics led to a decline in research in the West. The emphasis changed to the use of phages as tools for fundamental molecular studies focussing on the nature, replication and regulation of genes. These studies clarified the biology of phages and provided a foundation for investigation into phage therapy and biocontrol.


References

[1]  Kutter, E. and Sulakvelidze, A. (2005) eds. Bacteriophages Biology and Applications. 2005, CRC Press: Florida. 510.

[2]  Merril, C. et al. (2003) The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2, 489–497.
The prospect for bacteriophage therapy in Western medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFOhu7g%3D&md5=66331210303b505c97a35fc122c4e447CAS |

[3]  Sulakvelidze, A. et al. (2001) Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659.
Bacteriophage therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFWgt78%3D&md5=8aae121c73bfad37bb80a4da2c9503e3CAS |

[4]  Hanlon, G.W. (2007) Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents 30, 118–128.
Bacteriophages: an appraisal of their role in the treatment of bacterial infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFart74%3D&md5=0650434e7c88859a1e33a87f888b16d8CAS |

[5]  Ellis, E.L. and Delbruck, M. (1939) The growth of bacteriophage. J. Gen. Physiol. 22, 365–384.
The growth of bacteriophage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crjsl2itQ%3D%3D&md5=b8d06a9b2b8028904e342b253475e4aeCAS |

[6]  Lwoff, A. (1953) Lysogeny. Bacteriol. Rev. 17, 269–337.
| 1:CAS:528:DyaG2cXhvVygsw%3D%3D&md5=c3da6532bcb01e865e2dcbdb42a987bdCAS |

[7]  Williams Smith, H. and Huggins, M.B. (1983) Effectiveness of phages in treating experimental Escherichia coli diarhoea in calves, piglets and lambs. J. Gen. Microbiol. 129, 2659–2675.

[8]  Williams Smith, H. et al. (1987) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J. Gen. Microbiol. 133, 1127–1135.

[9]  Williams Smith, H. et al. (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133, 1111–1126.

[10]  French, G.L. (2010) The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents 36, S3–S7.
The continuing crisis in antibiotic resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFant7%2FK&md5=a7b3bd8a1ca10dde69f30245aa27e031CAS |

[11]  Cairns, B.J. et al. (2009) Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLoS Pathog. 5, e1000253.

[12]  Ryan, E.M. et al. (2011) Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 63, 1253–1264.
Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Citr3N&md5=66aac2a4f6df94dd3f5a52099dd2d450CAS |

[13]  Pirnay, J.P. et al. (2012) Introducing yesterday’s phage therapy in today’s medicine. Future Virol. 7, 379–390.
Introducing yesterday’s phage therapy in today’s medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2nu74%3D&md5=5c3aa20c5edbb6fa1da3042864312f69CAS |

[14]  Hagens, S. and Loessner, M. (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76, 513–519.
Application of bacteriophages for detection and control of foodborne pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1aht78%3D&md5=4b83291031afa8d487064f616d6cbecfCAS |

[15]  Carson, L. et al. (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol. Med. Microbiol. 59, 447–455.
| 1:CAS:528:DC%2BC3cXhtVeju7zN&md5=a0be5056dd7f38e8b96535f712fc1bc1CAS |

[16]  Chibeu, A. et al. (2012) Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 4, 471–487.
Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslOqsbo%3D&md5=1fe374e12146f2c136514848df675589CAS |

[17]  Abuladze, T. et al. (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef with Escherichia coli O157:H7. Appl. Environ. Microbiol. 74, 6230–6238.
Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef with Escherichia coli O157:H7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ygu7jE&md5=913ec31bb13a5972fda7a87706acb41aCAS |

[18]  Bardina, C. et al. (2012) Significance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry. Appl. Environ. Microbiol. 78, 6600–6607.
Significance of the bacteriophage treatment schedule in reducing salmonella colonization of poultry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlalurrP&md5=0280bb4bf2929e0e9ae4af5cf1eb0cb2CAS |

[19]  Bigot, B. et al. (2011) Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol. 28, 1448–1452.
Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MfksVGltA%3D%3D&md5=d9aa72dff92fe4177f031757d7b0d5e5CAS |

[20]  Carvalho, C.M. et al. (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 10, 232.
The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens.Crossref | GoogleScholarGoogle Scholar |

[21]  FDA (2006) Food and Drugs Title 21, Volume 3, Subchapter B - Food for Human Consumption, in Chapter I.

[22]  FSANZ, F.S.A.N.Z., (2012) Approval Report – Application A1045 in Bacteriophage Preparation P100 as Processing Aid.

[23]  Jamalludeen, N. et al. (2009) Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet. Microbiol. 136, 135–141.
Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs.Crossref | GoogleScholarGoogle Scholar |

[24]  Hawkins, C. et al. (2010) Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial. Vet. Microbiol. 146, 309–313.
Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial.Crossref | GoogleScholarGoogle Scholar |

[25]  Oliveira, A. et al. (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol. 146, 303–308.
In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses.Crossref | GoogleScholarGoogle Scholar |

[26]  Stenholm, A.R. et al. (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 74, 4070–4078.
Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1Omsbk%3D&md5=bb6aaebce51714e6ae677c0cb4ad5370CAS |

[27]  Defoirdt, T. et al. (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 14, 251–258.
Alternatives to antibiotics for the control of bacterial disease in aquaculture.Crossref | GoogleScholarGoogle Scholar |

[28]  Oliveira, J. et al. (2012) Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquacult. Int. 20, 879–910.
Bacteriophage therapy as a bacterial control strategy in aquaculture.Crossref | GoogleScholarGoogle Scholar |

[29]  Sheng, H. et al. (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl. Environ. Microbiol. 72, 5359–5366.
Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKlsL4%3D&md5=929b05d3b9cecdc353c83fea4c3c540dCAS |

[30]  Wall, S.K. et al. (2010) Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl. Environ. Microbiol. 76, 48–53.
Phage therapy to reduce preprocessing Salmonella infections in market-weight swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFOnug%3D%3D&md5=429b14190c50135f558aa84463e10df8CAS |

[31]  Doyle, M.P. and Erickson, M.C. (2012) Opportunities for mitigating pathogen contamination during on-farm food production. Int. J. Food Microbiol. 152, 54–74.
Opportunities for mitigating pathogen contamination during on-farm food production.Crossref | GoogleScholarGoogle Scholar |

[32]  Sillankorva, S. et al. (2010) Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry. J. Appl. Microbiol. 108, 1175–1186.
Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Oqsb0%3D&md5=a83360ee5092d468075115079f472f49CAS |

[33]  Verma, V. et al. (2009) Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J. Antimicrob. Chemother. 64, 1212–1218.
Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqtLvE&md5=b5fa33b180fbd30da72170c03591f869CAS |

[34]  Comeau, A.M. et al. (2007) Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2, e799.
Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth.Crossref | GoogleScholarGoogle Scholar |

[35]  Kutateladze, M. and Adamia, R. (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 28, 591–595.
Bacteriophages as potential new therapeutics to replace or supplement antibiotics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVags7nK&md5=25d55ce7fa7b68291deb45fbc28bcb92CAS |

[36]  Hermoso, J.A. et al. (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 10, 461–472.
Taking aim on bacterial pathogens: from phage therapy to enzybiotics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yltbzM&md5=e09645d9ca974bfc1862293c23bd1b8bCAS |

[37]  O’Flaherty, S. et al. (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol. Rev. 33, 801–819.
Bacteriophage and their lysins for elimination of infectious bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGhu70%3D&md5=1c9561a280301a5353699bf5511a1cd8CAS |

[38]  Fischetti, V.A. (2010) Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens. Int. J. Med. Microbiol. 300, 357–362.
Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVantrvM&md5=fec9c441003a84adf41abee71e636d59CAS |

[39]  Borysowski, J. et al. (2011) Potential of bacteriophages and their lysins in the treatment of MRSA: Current status and future perspectives. BioDrugs 25, 347–355.
Potential of bacteriophages and their lysins in the treatment of MRSA: Current status and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aiurs%3D&md5=824406ac27f5186f6c8903b6bb269251CAS |

[40]  Vaks, L. and Benhar, I. I. (2011) Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria, in Methods in molecular biology S.J. Hurst, Editor. Springer Science+Business Media: Clifton, N.J. p. 187–206.

[41]  Clark, J.R. et al. (2011) Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunol. Med. Microbiol. 61, 197–204.
Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFahtLw%3D&md5=3e1c9b32948b65b4244b354e74134b93CAS |

[42]  Waseh, S. et al. (2010) Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: Prospects of a novel therapy against bacterial infections. PLoS ONE 5, e13904.
Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: Prospects of a novel therapy against bacterial infections.Crossref | GoogleScholarGoogle Scholar |

[43]  Edgar, R. et al. (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol. 78, 744–751.
Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOiur4%3D&md5=c5b21c2835489c503b9fe77995435908CAS |