Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea

Adrian Ardila-Camacho https://orcid.org/0000-0002-3750-8671 A B * and Atilano Contreras-Ramos https://orcid.org/0000-0001-8044-1348 C
+ Author Affiliations
- Author Affiliations

A Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-153, 04510, Ciudad de México, Mexico.

B Universidad Distrital “Francisco José de Caldas”, Facultad de Ciencias Matemáticas y Naturales, Carrera 4 # 26D-31, Bogotá, Colombia.

C Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.

* Correspondence to: adrian.ardila@st.ib.unam.mx

Handling Editor: Andy Austin

Invertebrate Systematics 39, IS24033 https://doi.org/10.1071/IS24033
Submitted: 29 March 2024  Accepted: 9 December 2024  Published: 20 January 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae. The phylogenetic position of the subfamily Symphrasinae within Mantispoidea is here inferred based on total evidence analysis combining three genes (COI, 16S and 18S) and 72 morphological characters scored from living representatives of all Mantispidae subfamilies (12 genera), the 3 genera of Symphrasinae, and Rhachiberothinae (1 genus). Representatives of Berothidae (four genera) and Hemerobiidae (one genus) were used as outgroup taxa. Results of the total evidence analysis were compared with parsimony and maximum likelihood analyses of the morphological and molecular datasets of the COI, 16S and 18S genes. The resultant phylogeny under total evidence recovered Rhachiberothidae as a monophyletic group with strong support in which Symphrasinae was found as sister to Rhachiberothinae. The three genera contained in Symphrasinae, i.e. Anchieta, Plega and Trichoscelia were each recovered as monophyletic in the parsimony analysis, with Anchieta as sister to Trichoscelia + Plega. The family Mantispidae was also recovered as monophyletic and sister to Rhachiberothidae, with Mantispinae as sister to Calomantispinae + Drepanicinae. Evolution of the raptorial condition in Mantispoidea is discussed based on the performed analyses. The morphology and the structure of the raptorial foreleg and the prothorax (i.e. the raptorial system) support the close relationship of Symphrasinae with Rhachiberothinae rather than to other Mantispidae subfamilies which possess a distinctive and well-differentiated raptorial apparatus. The Rhachiberothidae (including Symphrasinae) are distinguished by the presence of a foretarsal Stitz organ. Furthermore, a sit-and-wait predatory strategy is hypothesised for this taxon, whereas the Mantispidae are likely sophisticated active-ambushing predators.

Keywords: mantidflies, phylogenetics, Raptoneuroptera, raptorial foreleg, Symphrasinae, systematics, taxonomy, thorny lacewings.

References

Ardila-Camacho A, Cancino-López RJ, Acevedo F, Contreras-Ramos A (2019) Four new species of Plega Navás, 1928 (Neuroptera: Mantispidae) from Mexico. Zootaxa 4612, zootaxa.4612.3.3.
| Crossref | Google Scholar | PubMed |

Ardila-Camacho A, Martins CC, Aspöck U, Contreras-Ramos A (2021a) Comparative morphology of extant raptorial Mantispoidea (Neuroptera: Mantispidae, Rhachiberothidae) suggests a non-monophyletic Mantispidae and a single origin of the raptorial condition within the superfamily. Zootaxa 4992(1), 1-89.
| Crossref | Google Scholar | PubMed |

Ardila-Camacho A, Machado RJP, Contreras-Ramos A (2021b) A review of the biology of Symphrasinae (Neuroptera: Rhachiberothidae), with the description of the egg and primary larva of Plega Navás, 1909. Zoologischer Anzeiger 294, 165-185.
| Crossref | Google Scholar |

Ardila-Camacho A, Machado RJP, Ohl M, Contreras-Ramos A (2024) A camouflaged diversity: taxonomic revision of the thorny lacewing subfamily Symphrasinae (Neuroptera, Rhachiberothidae). ZooKeys 1199, 1-409.
| Crossref | Google Scholar | PubMed |

Aspöck U, Aspöck H (2007) Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia 20, 451-516 [In German].
| Google Scholar |

Aspöck U, Aspöck H (2008) Phylogenetic relevance of the genital sclerites of Neuropterida (Insecta: Holometabola. Systematic Entomology 33, 97-127.
| Crossref | Google Scholar |

Aspöck U, Mansell MW (1994) A revision of the family Rhachiberothidae Tjeder, 1959, stat. n. (Neuroptera). Systematic Entomology 19, 181-206.
| Crossref | Google Scholar |

Aspöck U, Nemeschkal HL (1988) A cladistic analysis of the Berothidae (Neuroptera). Acta Zoologica Fennica 209, 12-63.
| Google Scholar |

Aspöck U, Randolf S (2014) Beaded lacewings—a pictorial identification key to the genera, their biogeographics and a phylogentic analysis (Insecta: Neuroptera: Berothidae). Deutsche Entomologische Zeitschrift, Berlin, Neue Folge 61, 155-172.
| Crossref | Google Scholar |

Aspöck U, Plant JD, Nemeschkal HL (2001) Cladistic analysis of Neuroptera and their systematic position within the Neuropterida (Insecta: Holometabola: Neuropterida: Neuroptera). Systematic Entomology 26, 73-86.
| Crossref | Google Scholar |

Aspöck U, Aspöck H, Johnson JB, Donga TK, Duelli P (2020) Rhachiella malawica gen. nov., spec. nov. from Malawi – another beauty of the Afrotropics (Neuroptera: Rhachiberothidae). Zootaxa 4808(1), zootaxa.4808.1.7.
| Crossref | Google Scholar | PubMed |

Azar D, Maksoud S, Huang D (2020) A new dipteromantispid from the mid-Cretaceous Burmese amber (Neuroptera: Dipteromantispidae). Palaeoentomology 003, 407-414.
| Crossref | Google Scholar |

Baranov V, Pérez-de la Fuente R, Engel MS, Hammel JU, Kiesmüller C, Hörnig MK, Pazinato PG, Stahlecker C, Haug C, Haug JT (2022) The first adult mantis lacewing from Baltic amber, with an evaluation of the post-Cretaceous loss of morphological diversity of raptorial appendages in Mantispidae. Fossil Record 25(1), 11-24.
| Crossref | Google Scholar |

Beutel RG, Zimmermann D, Krauss M, Randolf S, Wipfler B (2010a) Head morphology of Osmylus fulvicephalus (Osmylidae, Neuroptera) and its phylogenetic implications. Organisms Diversity and Evolution 10, 311-329.
| Crossref | Google Scholar |

Beutel RG, Friedrich F, Aspöck U (2010b) The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zoological Journal of the Linnean Society 158, 533-562.
| Crossref | Google Scholar |

Bremer K (1994) Branch support and tree stability. Cladistics 10, 295-304.
| Crossref | Google Scholar |

Büsse S, Bäumler F, Gorb SN (2021) Functional morphology of the raptorial forelegs in Mantispa styriaca (Insecta: Neuroptera). Zoomorphology 140, 231-241.
| Crossref | Google Scholar |

Cai C, Tihelka E, Liu X, Engel M (2023) Improved modelling of compositional heterogeneity reconciles phylogenomic conflicts among lacewings. Palaeoentomology 006, 049-057.
| Crossref | Google Scholar |

Dorey JB, Merritt DJ (2017) First observations on the life cycle and mass eclosion events in a mantis fly (Family Mantispidae) in the subfamily Drepanicinae. Biodiversity Data Journal 5, e21206, 21206.
| Crossref | Google Scholar | PubMed |

Eggenreich U, Kral K (1990) External design and field of view of the compound eyes in a raptorial neuropteran insect, Mantispa styriaca. Journal of Experimental Biology 148, 353-365.
| Crossref | Google Scholar |

Enderlein G (1910) Klassifikation der Mantispiden nach dem material des Stettiner Zoologischen Museums. Stettiner Entomologische Zeitung 71, 341-379 [In German].
| Google Scholar |

Frantsevich L (1998) The coxal articulation of the insect striking leg: a comparative study. Journal of Morphology 236, 127-138.
| Crossref | Google Scholar | PubMed |

Goloboff PA, Catalano SA (2016) TNT version 1.5, including full implementation of phylogenetic morphometrics. Cladistics 32, 221-238.
| Crossref | Google Scholar | PubMed |

Haring E, Aspöck U (2004) Phylogeny of the Neuropterida: a first molecular approach. Systematic Entomology 29(3), 415-430.
| Crossref | Google Scholar |

Henry CS (1982) Neuroptera. In ‘Synopsis and classification of living organisms. Vol. 2’. (Eds SP Parker) pp. 470–482. (McGraw-Hill Book Co.: New York, NY, USA)

Hoffman KM, Brushwein JR (1992) Descriptions of the larvae and pupae of some North American Mantispinae (Neuroptera: Mantispidae) and development of a system of larval chaetotaxy for Neuroptera. Transactions of the American Entomological Society 118, 159-196.
| Google Scholar |

Hook AW, Oswald JD, Neff JL (2010) Plega hagenella (Neuroptera: Mantispidae) parasitism of Hylaeus (Hylaeopsis) sp. (Hymenoptera: Colletidae) reusing nests of Trypoxylon manni (Hymenoptera: Crabronidae) in Trinidad. Journal of Hymenoptera Research 19, 77–-83.
| Google Scholar |

Jandausch K, Pohl H, Aspöck U, Winterton SL, Beutel RG (2018a) Morphology of the primary larva of Mantispa aphavexelte Aspöck & Aspöck, 1994 (Neuroptera: Mantispidae) and phylogenetic implications to de order of Neuroptera. Arthropod Systematics & Phylogeny 76, 529-560.
| Crossref | Google Scholar |

Jandausch K, Beutel RG, Pohl H, Gorb SN, Büsse S (2018b) The legs of “spider associated” parasitic primary larvae of Mantispa aphavexelte (Mantispidae, Neuroptera)—attachment devices and phylogenetic implications. Arthropod Structure & Development 47, 449-456.
| Crossref | Google Scholar |

Jepson JE, Ohl H (2019) Mesozoic Mantispidae: a review of the current state of knowledge. In ‘Proceedings of the XIII International Symposium of Neuropterology’, 17–22 June 2018, Laufen, Germany. (Eds F Weihrauch, O Frank, AV Gruppe, JE Jepson, L Kirschey, M Ohl) pp. 233–240. (Osmylus Scientific Publishers: Wolnzach, Germany)

Jouault C (2021) A new species of thorny lacewing (Neuroptera: Rhachiberothidae: Paraberothinae) from mid-Cretaceous Burmese amber with novel raptorial foreleg structure. Proceedings of the Geologists’ Association 133, 32-39.
| Crossref | Google Scholar |

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059-66.
| Crossref | Google Scholar | PubMed |

Komatsu T (2014) Larvae of the Japanese termitophilous predator Isoscelipteron okamotonis (Neuroptera, Berothidae) use their mandibles and silk web to prey on termites. Insectes Sociaux 61, 203-205.
| Crossref | Google Scholar |

Kral K (2013) Vision in the mantispid: a sit-and-wait and stalking predatory insect. Physiological Entomology 38, 1-12.
| Crossref | Google Scholar |

Kral K, Vernik M, Devetak D (2000) The visually controlled prey-capture behaviour of the European mantispid Mantispa styriaca. Journal of Experimental Biology 203, 2117-2123.
| Crossref | Google Scholar | PubMed |

Kristensen NP (1981) Phylogeny of insect orders. Annual Review of Entomology 26, 135-157.
| Crossref | Google Scholar |

Lai Y, Du S, Li H, Zheng Y, Ardila-Camacho A, Aspöck U, et al. (2024) Lacewing-specific universal single copy orthologs designed towards resolution of backbone phylogeny of Neuropterida. Systematic Entomology 1-16.
| Crossref | Google Scholar |

Lambkin KJ (1986a) A revision of the Australian Mantispidae (Insecta: Neuroptera) with a contribution to the classification of the family. I. General and Drepanicinae. Australian Journal of Zoology, Supplementary Series 116, 1-142.
| Crossref | Google Scholar |

Lambkin KJ (1986b) A revision of the Australian Mantispidae (Insecta: Neuroptera) with a contribution to the classification of the family. II. Calomantispinae and Mantispinae. Australian Journal of Zoology, Supplementary Series 117, 1-113.
| Crossref | Google Scholar |

Lanfear R, Calcott B, Simon YWH, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695-701.
| Crossref | Google Scholar | PubMed |

Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913-925.
| Crossref | Google Scholar | PubMed |

Li H, Wu C, Ohl M, Liu X (2020a) A new sexually dimorphic mantidfly species of Allomantispa Liu et al., 2015 from China (Neuroptera: Mantispidae). Journal of Asia-Pacific Entomology 23, 988-1002.
| Crossref | Google Scholar |

Li H, Zhuo D, Wang B, Liu X (2020b) New dipteromantispids (Insecta: Neuroptera: Dipteromantispidae) from mid-Cretaceous Myanmar amber. Cretaceous Research 116, 1-10.
| Crossref | Google Scholar |

Li H, Zhuo D, Cao L, Wang B, Poinar G, Ohl M, Liu M (2022) New Cretaceous fossil mantispids highlight the palaeodiversity of the extinct subfamily Doratomantispinae (Neuroptera: Mantispidae. Organisms Diversity & Evolution 22, 681-730.
| Crossref | Google Scholar |

Li H, Zhuo D, Wang B, Nakamine H, Yamamoto S, Zhang W, Ling J, Ohl M, Aspöck U, Aspöck H, Liu X (2023) New genera and species of Mantispoidea (Insecta, Neuroptera) from the mid-Cretaceous Kachin amber, northern Myanmar. Palaeoentomology 6, 549-611.
| Crossref | Google Scholar |

Liu X, Winterton SL, Chao W, Ross P, Ohl M (2015) A new genus of mantidflies discovered in the Oriental region, with a higher-level phylogeny of Mantispidae (Neuroptera) using DNA sequences and morphology. Systematic Entomology 40, 183-206.
| Crossref | Google Scholar |

Liu X, Lu X, Zhang W (2016) Halteriomantispa grimaldii gen. et sp. nov.: a new genus and species of the family Dipteromantispidae (Insecta: Neuroptera) from the mid-Cretaceous amber of Myanmar. Zoological Systematics 41, 165-172.
| Google Scholar |

Lu X, Liu X (2021) The Neuropterida from the mid-Cretaceous of Myanmar: a spectacular palaeodiversity bridging the Mesozoic and present faunas. Cretaceous Research 121, 104727.
| Crossref | Google Scholar |

Lu X, Wang B, Wang W, Zhang M, Ohl M, Engel MS, Liu X (2020) Cretaceous diversity and disparity in a lacewing lineage of predators (Neuroptera: Mantispidae). Proceedings of the Royal Society of London – B. Biological Sciences 287, 20200629.
| Crossref | Google Scholar | PubMed |

MacLeod EG, Adams PA (1967) A review of the taxonomy and morphology of the Berothidae, with the description of a new subfamily from Chile (Neuroptera. Psyche 74, 237-265.
| Crossref | Google Scholar |

Makarkin VN (2015) A new genus of the mantispid-like Paraberothinae (Neuroptera: Berothidae) from Burmese amber, with special consideration of its probasitarsus spine-like setation. Zootaxa 4007(3), 327-42.
| Crossref | Google Scholar | PubMed |

Makarkin VN, Kupryjanowicz J (2010) A new mantispid-like species of Rhachiberothinae (Neuroptera: Berothidae) from Baltic amber, with a critical review of the fossil record of the subfamily. Acta Geologica Sinica (English Edition) 84, 655-664.
| Crossref | Google Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE) doi:10.1109/GCE.2010.5676129

Minter LR (1990) A comparison of the eggs and first-instar larvae of Mucroberotha vesicaria Tjeder with those of other species in the families Berothidae and Mantispidae (Insecta: Neuroptera). In ‘Advances in Neuropterology. Proceedings of the Third International Symposium on Neuropterology’, 3–4 February 1988, Berg-en-Dal, Kruger National Park, South Africa. (Eds Mansell MW, Aspöck H) pp. 115–129. (South African Department of Agricultural Development: Pretoria, South Africa).

Misof B, Liu SL, Meusemann K, Peters RS, Donath A, Mayer C, et al. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767.
| Crossref | Google Scholar | PubMed |

Monserrat VJ (2006) Nuevos datos sobre algunas especies de la familia Berothidae (Insecta: Neuroptera). Heteropterus: Revista de Entomología 6, 173-207 [In Spanish].
| Google Scholar |

Monserrat VJ (2014) Los mantíspidos de la Península Ibérica y Baleares (Insecta, Neuropterida, Neuroptera, Mantispidae). Graellsia 70(e012), 1-52 [In Spanish].
| Crossref | Google Scholar |

Nakamine H, Yamamoto S, Takahashi Y (2020) Hidden diversity of small predators: new thorny lacewings from mid-Cretaceous amber from northern Myanmar (Neuroptera: Rhachiberothidae: Paraberothinae. Geological Magazine 7, 1149-1175.
| Crossref | Google Scholar |

Navás L (1909) Mantíspidos nuevos [I]. Memorias de la Real Academia de Ciencias y Artes de Barcelona 7(3), 473-485 [In Spanish].
| Google Scholar |

Navás L (1914) Mantíspidos nuevos (Segunda [II] serie). Memorias de la Real Academia de Ciencias y Artes de Barcelona 11(3), 83-103 [In Spanish].
| Google Scholar |

Nel A, Perrichot V, Azar D, Néraudeau D (2005) New Rhachiberothidae (Insecta: Neuroptera) in Early Cretaceous and Early Eocene ambers from France and Lebanon. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen 235, 51-85.
| Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Mihn BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Ohl M (2004) Annotated catalog of the Mantispidae of the world (Neuroptera). Contributions on Entomology, International 5(3), 131-262.
| Google Scholar |

Oswald JD, Machado RJP (2018) Biodiversity of the Neuropterida (Insecta: Neuroptera: Megaloptera, and Raphidioptera). In ‘Insect biodiversity: science and society, Vol. II’, 2nd edn. (Eds Foottit RG, Adler PH) pp. 627–671. (Wiley: New York, NY, USA)

Parsons MC (1968) The cephalic and prothoracic skeletomusculature and nervous system in Lethocerus (Heteroptera, Belostomatidae). Journal of the Linnean Society (Zoology) 47, 349-406.
| Crossref | Google Scholar |

Penny ND (1982) Review of the generic level classification of the New World Mantispidae (Neuroptera). Acta Amazônica 12, 209-223.
| Crossref | Google Scholar |

Penny ND, da Costa CA (1983) Mantispídeos do Brasil (Neuroptera: Mantispidae). Acta Amazonica 13, 601-687 [In Portuguese].
| Crossref | Google Scholar |

Pérez-de la Fuente R, Peñalver E (2019) A mantidfly in Cretaceous Spanish amber provides insights into the evolution of integumentary specialisations on the raptorial foreleg. Scientific Reports 9, 13248.
| Crossref | Google Scholar | PubMed |

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901-904.
| Crossref | Google Scholar | PubMed |

Randolf S, Zimmermann D, Aspöck U (2013) Head anatomy of adult Sisyra terminalis (Insecta: Neuroptera: Sisyridae)—functional adaptations and phylogenetic implications. Arthropod Structure & Development 42, 565-582.
| Crossref | Google Scholar | PubMed |

Redborg KE (1998) Biology of the Mantispidae. Annual Review of Entomology 43, 175-194.
| Crossref | Google Scholar | PubMed |

Redborg KE, MacLeod EG (1985) ‘The developmental ecology of Mantispa uhleri Banks (Neuroptera: Mantispidae).’ (Illinois Biological Monographs: Urbana, IL, USA)

Rehn JWH (1939a) Studies in North American Mantispidae. Transactions of the American Entomological Society 65, 237-263.
| Google Scholar |

Rehn JWH (1939b) Anisoptera Schneider a homonym (Neuroptera: Mantispidae). Entomological News, Philadelphia 50, 82.
| Google Scholar |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-4.
| Crossref | Google Scholar | PubMed |

Saether OA (1979) Underlying synapomorphies and anagenetic analysis. Zoologica Scripta 8, 305-312.
| Crossref | Google Scholar |

Sereno PC (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23, 565-587.
| Crossref | Google Scholar | PubMed |

Shi C, Ohl M, Wunderlich J, Ren D (2015) A remarkable new genus of Mantispidae (Insecta, Neuroptera) from Cretaceous amber of Myanmar and its implications on raptorial foreleg evolution in Mantispidae. Cretaceous Research 52, 416-422.
| Crossref | Google Scholar |

Shi C, Yang Q, Winterton SL, Pang H, Ren D (2019) Stem-group fossils of Symphrasinae shed light on early evolution of Mantispidae (Insecta, Neuroptera). Papers in Palaeontology 6(1), 143-154.
| Crossref | Google Scholar |

Shi C, Yang Q, Shih C, Labandeira CC, Pang H, Ren D (2020) Cretaceous mantid lacewings with specialized raptorial forelegs illuminate modification of prey capture (Insecta, Neuroptera). Zoological Journal of the Linnean Society 190(3), 1054-1070.
| Crossref | Google Scholar |

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6), 651-701.
| Crossref | Google Scholar |

Snyman LP, Ohl M, Pirk CWW, Sole CL (2020) A review of the biology and biogeography of Mantispidae (Neuroptera). Insect Systematics and Evolution 52(2), 125-166.
| Crossref | Google Scholar |

Song N, Li X, Zhai Q, Bozdoğan H, Yin X (2019) The mitochondrial genomes of neuropteridan insects and implications for the phylogeny of Neuroptera. Genes 10(108), 1-19.
| Crossref | Google Scholar | PubMed |

Strong EE, Lipscomb D (1999) Character coding and inapplicable data. Cladistics 15, 363-371.
| Crossref | Google Scholar | PubMed |

Tjeder B (1959) Neuroptera–Planipennia. The Lace-wings of Southern Africa. 2. Family Berothidae. In ‘South African Animal Life, Vol. 6’. (Eds B Hanström, P Brinck, G Rudebec) pp. 256–314. (Swedish Natural Science Research Council: Stockholm, Sweden)

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1), W232-W235.
| Crossref | Google Scholar | PubMed |

Wang Y, Liu X, Liu X, Garzón-Orduña IJ, Winterton SL, Yan Y, Aspöck U, Aspöck , Yang H (2017) Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics 33, 617-636.
| Crossref | Google Scholar | PubMed |

Wang J, Shi Ch, Liu X, Shih Ch, Ren D, Wang Y (2024) A new stem group mantispoid lineage (Insecta: Neuroptera) equipped with unique raptorial structures from the Middle Jurassic of China. Journal of Systematics and Evolution 1-10.
| Crossref | Google Scholar |

Wedmann S, Makarkin VN (2007) A new genus of Mantispidae (Insecta: Neuroptera) from the Eocene of Germany, with a review of the fossil record and palaeobiogeography of the family. Zoological Journal of the Linnean Society 149, 701-716.
| Crossref | Google Scholar |

Weirauch C, Forero D, Jacobs DH (2011) On the evolution of raptorial legs – an insect example (Hemiptera: Reduviidae: Phymatinae). Cladistics 27, 138-149.
| Crossref | Google Scholar | PubMed |

Willmann R (1990) The phylogenetic position of the Rhachiberothinae and the basal sister-group relationships within the Mantispidae (Neuroptera). Systematic Entomology 15, 253-265.
| Crossref | Google Scholar |

Winterton SL, Hardy N, Wiegmann B (2010) On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Systematic Entomology 35(3), 349-378.
| Crossref | Google Scholar |

Winterton SL, Lemmon AR, Gillung JP, Garzon IJ, Badano D, Bakkes DK, Breitkreuz LCV, Engel MS, Lemmon E, Liu X, Machado R, Skevington J, Oswald JD (2018) Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Systematic Entomology 43, 330-354.
| Crossref | Google Scholar |

Yang Q, Shi C, Ren D (2019) A new genus and species of berothids (Insecta, Neuroptera) from the Late Cretaceous Myanmar amber. ZooKeys 864, 99-109.
| Crossref | Google Scholar | PubMed |

Yang Y, Li H, Wang B, Zhang W, Liu X (2020) New beaded lacewings (Neuroptera: Berothidae) from the mid-Cretaceous of Myanmar with specialized cephalic structures. Cretaceous Research 108, 104348.
| Crossref | Google Scholar |

Zimmermann D, Randolf S, Apöck U (2019) From chewing to sucking via phylogeny—from sucking to chewing via ontogeny: mouthparts of Neuroptera. In ‘Zoological Monographs: Vol. 5. Insect Mouthparts’. (Ed. H Krenn) pp. 361–385. (Springer: Cham, Switzerland) doi:10.1007/978-3-030-29654-4_11