Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A new genus of scutigerid centipede from southern South America with the description of two new species and an updated molecular phylogeny of the myriapod order Scutigeromorpha (Myriapoda: Chilopoda)

Andrés O. Porta https://orcid.org/0000-0002-9533-4139 A B C * and Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 D
+ Author Affiliations
- Author Affiliations

A División de Aracnología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina.

B Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina.

C Departamento de Ciencias Exactas, Universidad Nacional del Oeste, Belgrano 369 C1718, San Antonio de Padua, Buenos Aires, Argentina.

D Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

* Correspondence to: hugporta@yahoo.com.ar

Handling Editor: Prashant Sharma

Invertebrate Systematics 38, IS24006 https://doi.org/10.1071/IS24006
Submitted: 7 January 2024  Accepted: 12 March 2024  Published: 8 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Scutigeromorph centipedes are conspicuous, yet often ignored myriapods for which little work has been conducted in southern South America. After examining recent and museum collections from Chile and Argentina, two new species of generic uncertainty were identified. A new genus of scutigerid centipede, Edgethreua, is therefore described with two new species, E. chilensis from Central Chile (type species of the genus) and E. goloboffi from Argentinian Patagonia. The new genus is characterised by the presence of scattered setiform bristles with short paired spines and the absence of simple spinulae and spines on all stomatotergites, the presence of a single spine-bristle in the prefemur of the second maxilla, a patch of cuticular ridges and pores surrounding the sensilla of the proximal labral portion of the epipharynx, the morphology of the sensilla of the distal patch of the hypopharynx and the morphology of the female gonopods. A phylogenetic analysis of the new species using two nuclear ribosomal RNA genes (18S and 28S rRNA), two mitochondrial ribosomal RNA genes (12S and 16S rRNA) and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I show that the new genus does not cluster with any other described genus of scutigeromorph represented in molecular phylogenies. The data indicate that the new genus is probably sister group to a clade including the genera Lassophora, Ballonema and the subfamily Thereuoneminae, although one analysis suggests a position as sister group to Scutigerinae.

ZooBank: urn:lsid:zoobank.org:pub:A4D453F3-9031-4E21-84C7-87F16C07AD51

Keywords: molecular systematics, morphology, myriapods, phylogenetic relationships, Scutigeridae, southern South America, taxonomy, Thereuoneminae.

References

Benavides LR, Edgecombe GD, Giribet G (2023) Re-evaluating and dating myriapod diversification with phylotranscriptomics under a regime of dense taxon sampling. Molecular Phylogenetics and Evolution 178, 107621.
| Crossref | Google Scholar | PubMed |

Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
| Crossref | Google Scholar | PubMed |

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| Crossref | Google Scholar | PubMed |

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, et al. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
| Crossref | Google Scholar | PubMed |

Bücherl W (1949) Estudos sobre escutigeromorfos brasileiros. Memórias do Instituto Butantan 21, 9-54.
| Google Scholar |

Bücherl W (1953) Quilópodos, aranhas e escorpiões enviados ao Instituto Butantan para determinaçcao. Memórias do Instituto Butantan 25, 109-151 [In Portuguese].
| Google Scholar | PubMed |

Butler AD, Edgecombe GD, Ball AD, Giribet G (2010) Resolving the phylogenetic position of enigmatic New Guinea and Seychelles Scutigeromorpha (Chilopoda): a molecular and morphological assessment of Ballonemini. Invertebrate Systematics 24, 539-559.
| Crossref | Google Scholar |

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.
| Crossref | Google Scholar | PubMed |

Cei JM (1969) La Meseta Basáltica de Somuncura. Río Negro. Su herpetofauna endémica y sus peculiares equilibrios biocenóticos. Physis, Sec. C 28, 257-273 [In Spanish].
| Google Scholar |

Chagas-Jr A, Chaparro E, Jiménez SG, Triana HDT, Flórez D E, Seoane JCS (2014) The centipedes (Arthropoda, Myriapoda, Chilopoda) from Colombia: Part I. Scutigeromorpha and Scolopendromorpha. Zootaxa 3779, 133-156.
| Crossref | Google Scholar | PubMed |

Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.
| Crossref | Google Scholar | PubMed |

Coineau Y (1974) Elements pour une monographie morphologique, ecologique et biologique des Caeculidae (Acariens). Mémoires du Museum national d’Histoire Naturelle, Serie A, Zoologie 81, 1-299 [In French].
| Google Scholar |

de Saussure H, Humbert A (1872) Etudes sur les Myriapodes. In ‘Mission scientifique au Mexique et dans l’Amérique Centrale, ouvrage publié par ordre du Ministre de l’Instruction Publique. Recherches Zoologiques, publiées sous la direction de M. Milne Edwards, Membre de l’Institut. Sixième partie, seconde section’. (Ed. H Milne Edwards) 211 pp. (Imprimerie Nationale: Paris, France) [In French]

Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
| Crossref | Google Scholar | PubMed |

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar |

Edgecombe GD (2011a) Chilopoda – taxonomic overview. Order Scutigeromorpha. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Vol. 1’. (Ed. A Minelli) pp. 363–370. (Brill)

Edgecombe GD (2011b) Chilopoda – the fossil history. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Vol. 1’. (Ed. A Minelli) pp. 355–361. (Brill)

Edgecombe GD, Barrow L (2007) A new genus of scutigerid centipedes (Chilopoda) from Western Australia, with new characters for morphological phylogenetics of Scutigeromorpha. Zootaxa 1409, 23-50.
| Crossref | Google Scholar |

Edgecombe GD, Giribet G (2006) A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20, 503-525.
| Crossref | Google Scholar |

Edgecombe GD, Giribet G (2009) Phylogenetics of scutigeromorph centipedes (Myriapoda: Chilopoda) with implications for species delimitation and historical biogeography of the Australian and New Caledonian faunas. Cladistics 25, 406-427.
| Crossref | Google Scholar | PubMed |

Fernández R, Edgecombe GD, Giribet G (2016) Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology 65, 871-889.
| Crossref | Google Scholar | PubMed |

Giribet G, Edgecombe GD (2013) Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda: Chilopoda: Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods. Invertebrate Systematics 27, 485-501.
| Crossref | Google Scholar |

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar | PubMed |

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the Ultrafast Bootstrap approximation. Molecular Biology and Evolution 35, 518-522.
| Crossref | Google Scholar | PubMed |

Hollier J, Stagl V (2016) The Chilopoda (Myriapoda) described by Aloïs Humbert, Henri de Saussure and Leo Zehntner. Revue Suisse de Zoologie 123, 227-233.
| Google Scholar |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2014) MAFFT: Iterative refinement and additional methods. In ‘Multiple Sequence Alignment Methods’. (Ed. DJ Russell) pp. 131–146. (Humana Press: Totowa, NJ, USA)

Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33(2), 511-518.
| Crossref | Google Scholar |

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160-1166.
| Crossref | Google Scholar | PubMed |

Kay SM, Ardolino AA, Gorring ML, Ramos VA (2007) The Somuncura Large Igneous Province in Patagonia: interaction of a transient mantle thermal anomaly with a subducting slab. Journal of Petrology 48, 43-77.
| Crossref | Google Scholar |

Koch M, Edgecombe GD (2006) Peristomatic structures in Scutigeromorpha (Chilopoda): a comparative study, with new characters for higher-level systematics. Zoomorphology 125, 187-207.
| Crossref | Google Scholar |

Meinert F (1886) Myriapoda Musei Cantabrigensis, Mass. Part I. Chilopoda. Proceedings of the American Philosophical Society 23, 161-233.
| Google Scholar |

Menni RC (2004) ‘Peces y ambientes en la Argentina Continental.’ (Monografías del Museo Argentino de Ciencias Naturales: Buenos Aires, Argentina) [In Spanish]

Mundel P (1979) The centipedes (Chilopoda) of the Mazon Creek. In ‘Mazon Creek Fossils’. (Ed. M Nitecki) pp. 361–378. (Academic Press: New York, NY, USA)

Murienne J, Edgecombe GD, Giribet G (2010) Including secondary structure, fossils and molecular dating in the centipede tree of life. Molecular Phylogenetics and Evolution 57, 301-313.
| Crossref | Google Scholar | PubMed |

Negrea T (2003) On the Scutigeromorpha (Chilopoda) from Israel and adjoining areas. Israel Journal of Zoology 49, 241-253.
| Crossref | Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Ojanguren-Affilastro AA, Garcia-Mauro I (2010) A new Bothriurus (Scorpiones, Bothriuridae) from the Somuncura Plateau, with additions to the knowledge to the endemic scorpion fauna of the area. Zootaxa 2488, 52-64.
| Crossref | Google Scholar |

Pereira LA (1998) Chilopoda. In ‘Biodiversidad de Artrópodos. Una perspectiva taxonómica’. (Eds JJ Morrone, S Coscarón) pp. 463–474. (Ediciones Sur: La Plata, Argentina) [In Spanish]

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901-904.
| Crossref | Google Scholar | PubMed |

Scotese CR (2004) Cenozoic and Mesozoic paleogeography: changing terrestrial biogeographic pathways. In ‘Frontiers of Biogeography: New Directions in the Geography of Nature’. (Eds MV Lomolino, LR Heaney) pp. 9–26. (Sinauer Associates: Sunderland, MA, USA)

Shear WA, Edgecombe GD (2010) The geological record and phylogeny of the Myriapoda. Arthropod Structure & Development 39, 174-190.
| Crossref | Google Scholar | PubMed |

Shear WA, Jeram AJ, Selden PA (1998) Centipede legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. American Museum Novitates 3231, 1-16.
| Google Scholar |

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232-W235.
| Crossref | Google Scholar | PubMed |

Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171-180.
| Crossref | Google Scholar | PubMed |

Vega-Román E, Ruiz VH (2018) Catalogue of Chilean centipedes (Myriapoda, Chilopoda). Soil Organisms 90, 27-37.
| Google Scholar |

Verhoeff KW (1905) Über scutigeriden. Zoologischer Anzeiger 29, 105-119 [In German].
| Google Scholar |

Wheeler W (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1-9.
| Google Scholar |

Wilson HM (2001) First Mesozoic scutigeromorph centipede, from the Lower Cretaceous of Brazil. Palaeontology 44, 489-495.
| Crossref | Google Scholar |

Würmli M (1973) Zur Systematik der Scutigeriden Europas und Kleinasiens (Chilopoda: Scutigeromorpha). Annalen des Naturhistorisches Museums in Wien 77, 399-408 [In German].
| Google Scholar |

Würmli M (1974) Systematic criteria in the Scutigeromorpha. In ‘Myriapoda. Symposia of the Zoological Society of London. Vol. 32’. (Ed. JG Blower) pp. 89–98. (Academic Press: London, UK)