Integrative taxonomy in Syllis prolifera (Annelida, Syllidae): from a unique cosmopolitan species to a complex of pseudocryptic species
Irene del Olmo A # * , Josep Roma-Cavagliani B # , María del Rosario Martín-Hervás A B , Joachim Langeneck C , Juan Lucas Cervera B D and Patricia Álvarez-Campos A *A
B
C
D
Handling Editor: Ana Riesgo
Abstract
Syllis prolifera (Syllidae, Syllinae) is an abundant species of marine annelids commonly found in warm to temperate waters worldwide. Although morphological variability occurs among populations, S. prolifera has long been considered a cosmopolitan species, widely distributed in coastal environments, including acidified and polluted areas. However, the increasing number of cases of cryptic and pseudocryptic speciation in several polychaete families in recent years has led us to question whether S. prolifera represents a single globally distributed taxon or is a species complex. To address this question, we conducted an integrative study, combining morphological, ecological and molecular data of 52 S. prolifera specimens collected in different localities across the western Mediterranean Sea and the Gulf of Cadiz. Our phylogenetic and species delimitation analyses that included two mitochondrial DNA markers (COI and 16S rRNA) were congruent in not considering S. prolifera a unique entity. Five distinct lineages that can also be recognised by certain morphological and ecological traits were identified from these analyses instead. Overall, our study does not support the homogeneity of S. prolifera across the Mediterranean Sea, providing a new example of pseudocrypticism in marine invertebrates.
Keywords: biodiversity, Gulf of Cádiz, Mediterranean Sea, molecular taxonomy, pseudocryptic species, species delineation, Syllidae, Syllis prolifera.
References
Aguado MT, San Martín G, Siddall ME (2012) Systematics and evolution of syllids (Annelida, Syllidae). Cladistics 28, 234-250.
| Crossref | Google Scholar | PubMed |
Aguado MT, Capa M, Lago-Barcia D, Gil J, Pleijel F, Nygren A (2019) Species delimitation in Amblyosyllis (Annelida, Syllidae). PLoS ONE 14, e0214211.
| Crossref | Google Scholar | PubMed |
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716-723.
| Crossref | Google Scholar |
Altschul SF, Gertz EM, Agarwala R, Schäffer AA, Yu Y-K (2009) PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Research 37, 815-824.
| Crossref | Google Scholar | PubMed |
Álvarez-Campos P, Giribet G, Riesgo A (2017a) The Syllis gracilis species complex: a molecular approach to a difficult taxonomic problem (Annelida, Syllidae). Molecular Phylogenetics and Evolution 109, 138-150.
| Crossref | Google Scholar |
Álvarez-Campos P, Giribet G, San Martín G, Rouse GW, Riesgo A (2017b) Straightening the striped chaos: systematics and evolution of Trypanosyllis and the case of its pseudocryptic type species Trypanosyllis krohnii (Annelida, Syllidae). Zoological Journal of the Linnean Society 179, 492-540.
| Crossref | Google Scholar |
Astraldi M, Bianchi C, Gasparini G, Morri C (1995) Climatic fluctuations, current variability and marine species distribution – a case-study in the Ligurian sea (north-west Mediterranean). Oceanologica Acta 18, 139-149.
| Google Scholar |
Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In ‘Experimental and molecular approaches to plant biosystematics’. (Eds PC Hoch, AG Stephenson) Monographs in Systematic Botany from the Missouri Botanical Garden 53, pp. 289–303. (Missouri Botanical Garden: Saint Louis, MO, USA)
Bellan G (1980) Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast. Marine Pollution Bulletin 11, 318-321.
| Crossref | Google Scholar |
Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin 40, 367-376.
| Crossref | Google Scholar |
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148-155.
| Crossref | Google Scholar | PubMed |
Bobretzky N (1870) Матерiалы для фауны чернаго моря Аннелиды (Annelida, Polychaeta) [Materials to the fauna of the Black Sea (Annelida Polychaeta)]. ЗАПИСКИ КИЕВСКОГО О́БЩЕСТВА ЕСТЕСТВОИСПЫТА́ТЕЛЕЙ [Mémoires De La Société Des Naturalistes De Kiew/Notes of the Kiev Society of Naturalists] 1, 188-274 [In Russian].
| Google Scholar |
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| Crossref | Google Scholar | PubMed |
Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Marine Biology 157, 2489-2502.
| Crossref | Google Scholar |
Claparède R-É (1864) Glanures zootomiques parmi les annélides de Port-Vendres (Pyrénées orientales). Mémoires De La Société De Physique Et d’Histoire Naturelle De Genève 17(2), 463-600 [In French].
| Crossref | Google Scholar |
Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657-1659.
| Crossref | Google Scholar | PubMed |
Clement MJ, Quinn S, Peter W, Posada D, Crandall KA (2002) TCS: estimating gene genealogies. In ‘Proceedings of the 16th International Parallel and Distributed Processing Symposium’, 15–19 April 2002, Fort Lauderdale, FL, USA. (IEEE) 10.1109/IPDPS.2002.1016585
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| Crossref | Google Scholar | PubMed |
de Matos Nogueira JM, San Martin G (2002) Species of Syllis Savigny in Lamarck, 1818 (Polychaeta: Syllidae) living in corals in the state of São Paulo, southeastern Brazil. Beaufortia 52, 57-93.
| Google Scholar |
Edler D, Klein J, Antonelli A, Silvestro D (2021) raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12, 373-377.
| Crossref | Google Scholar |
Ehlers EH (1864) ‘Die Borstenwürmer (Annelida Chaetopoda) nach systematischen und anatomischen Untersuchungen dargestellt.’ (W. Engelmann: Leipzig, German Empire) [In German] 10.5962/bhl.title.2081
Franke H-D (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402, 39-55.
| Crossref | Google Scholar |
Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707-724.
| Crossref | Google Scholar | PubMed |
Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851-861.
| Crossref | Google Scholar | PubMed |
Giangrande A (1988) Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. Journal of Experimental Marine Biology and Ecology 120, 263-276.
| Crossref | Google Scholar |
Giangrande A, Licciano M, Musco L (2005) Polychaetes as environmental indicators revisited. Marine Pollution Bulletin 50, 1153-1162.
| Crossref | Google Scholar | PubMed |
Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221-224.
| Crossref | Google Scholar | PubMed |
Gravier C (1900) Contribution à l’étude des annélides polychètes de la Mer Rouge. Première partie. Nouvelles Archives du Muséum d’Histoire Naturelle, Paris 2, 137-282 [In French].
| Google Scholar |
Grosse M, Bakken T, Nygren A, Kongsrud JA, Capa M (2020) Species delimitation analyses of NE Atlantic Chaetozone (Annelida, Cirratulidae) reveals hidden diversity among a common and abundant marine annelid. Molecular Phylogenetics and Evolution 149, 106852.
| Crossref | Google Scholar | PubMed |
Grube AE (1863) Beschreibung neuer oder wenig bekannter Anneliden. Sechster Beitrag. Archiv für Naturgeschichte, Berlin 29, 37-69 [In Latin and German].
| Crossref | Google Scholar |
Guerra-García JM, Cabezas P, Baeza-Rojano E, Espinosa F, García-Gómez JC (2009) Is the north side of the Strait of Gibraltar more diverse than the south side? A case study using the intertidal peracarids (Crustacea: Malacostraca) associated to the seaweed Corallina elongata. Journal of the Marine Biological Association of the United Kingdom 89, 387-397.
| Crossref | Google Scholar |
Haswell WA (1886) Observation on some Australian Polychaeta. Part I. [section headings: I. Syllidae. II. Staurocephalus. III. Eulalia. IV. Psamathe. IV. Siphonostoma. V. Halla.]. Proceedings of the Linnean Society of New South Wales 10, 733-756.
| Google Scholar |
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.
| Crossref | Google Scholar | PubMed |
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.
| Crossref | Google Scholar | PubMed |
Knowlton N (1993) Sibling species in the sea. Annual Review of Ecology and Systematics 24(1), 189-216.
| Google Scholar |
Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73-90.
| Crossref | Google Scholar |
Krohn A (1852) Ueber die Erscheinungen bei der Fortpflanzung von Syllis prolifera und Autolytus prolifer. Archiv für Naturgeschichte, Berlin 18(1), 66-76 [In German].
| Google Scholar |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547-1549.
| Crossref | Google Scholar | PubMed |
Kvist S (2016) Does a global DNA barcoding gap exist in Annelida? Mitochondrial DNA – A 27, 2241-2252.
| Crossref | Google Scholar | PubMed |
Langeneck J, Scarpa F, Maltagliati F, Sanna D, Barbieri M, Cossu P, Mikac B, Curini Galletti M, Castelli A, Casu M (2020) A complex species complex: the controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube, 1840 (Annelida, Syllidae). Journal of Zoological Systematics and Evolutionary Research 58, 66-78.
| Crossref | Google Scholar |
Langerhans P (1879) Die Wurmfauna von Madeira. Zeitschrift für Wissenschaftliche Zoologie 32, 513-592 [In German].
| Google Scholar |
Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110-1116.
| Crossref | Google Scholar |
Lucas Rodríguez Y, San Martín G, Fiege D (2020) New species and records of the genus Syllis Savigny in Lamarck, 1818 (Annelida: Syllidae) from Socotra Archipelago (Indian Ocean). Zootaxa 4742, 73-88.
| Crossref | Google Scholar | PubMed |
Munari M, Chiarore A, Signorini SG, Cannavacciuolo A, Nannini M, Magni S, Binelli A, Gambi MC, Della Torre C (2022) Surviving in a changing ocean. Tolerance to acidification might affect the susceptibility of polychaetes to chemical contamination. Marine Pollution Bulletin 181, 113857.
| Crossref | Google Scholar | PubMed |
Musco L, Giangrande A (2005) Mediterranean Syllidae (Annelida: Polychaeta) revisited: biogeography, diversity and species fidelity to environmental features. Marine Ecology Progress Series 304, 143-153.
| Crossref | Google Scholar |
Nygren A (2014) Cryptic polychaete diversity: a review. Zoologica Scripta 43, 172-183.
| Crossref | Google Scholar |
Nygren A, Pleijel F (2011) From one to ten in a single stroke – resolving the European Eumida sanguinea (Phyllodocidae, Annelida) species complex. Molecular Phylogenetics and Evolution 58, 132-141.
| Crossref | Google Scholar | PubMed |
Nygren A, Parapar J, Pons J, Meißner K, Bakken T, Kongsrud JA, Oug E, Gaeva D, Sikorski A, Johansen RA, Hutchings PA, Lavesque N, Capa M (2018) A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS ONE 13, e0198356.
| Crossref | Google Scholar | PubMed |
Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends in Ecology & Evolution 24, 386-393.
| Crossref | Google Scholar | PubMed |
Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
| Crossref | Google Scholar | PubMed |
Pleijel F, Rouse G, Nygren A (2009) Five colour morphs and three new species of Gyptis (Hesionidae, Annelida) under a jetty in Edithburgh, South Australia. Zoologica Scripta 38, 89-99.
| Crossref | Google Scholar |
Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595-609.
| Crossref | Google Scholar | PubMed |
Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609-620.
| Crossref | Google Scholar | PubMed |
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901-904.
| Crossref | Google Scholar | PubMed |
Ricevuto E, Benedetti M, Regoli F, Spicer JI, Gambi MC (2015) Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: results of an in situ reciprocal transplant experiment. Marine Environmental Research 112, 44-51.
| Crossref | Google Scholar | PubMed |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539-542.
| Crossref | Google Scholar | PubMed |
San Martín G, Lucas Y, Hutchings P (2023) The genus Syllis Savigny in Lamarck, 1881 (Annelida: Syllidae: Syllinae) from Australia (part 3): new species and redescription of previously described species. Zootaxa 5230, 251-295.
| Crossref | Google Scholar | PubMed |
Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573-583.
| Crossref | Google Scholar |
Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758-771.
| Crossref | Google Scholar | PubMed |
Stecher G, Tamura K, Kumar S (2020) Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution 37, 1237-1239.
| Crossref | Google Scholar | PubMed |
Sundberg P, Vodoti ET, Zhou H, Strand M (2009) Polymorphism hides cryptic species in Oerstedia dorsalis (Nemertea, Hoplonemertea). Biological Journal of the Linnean Society 98, 556-567.
| Crossref | Google Scholar |
Virgilio M, Fauvelot C, Costantini F, Abbiati M, Backeljau T (2009) Phylogeography of the common ragworm Hediste diversicolor (Polychaeta: Nereididae) reveals cryptic diversity and multiple colonization events across its distribution. Molecular Ecology 18, 1980-1994.
| Crossref | Google Scholar | PubMed |
Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869-2876.
| Crossref | Google Scholar | PubMed |