Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Vicariance and cryptic diversity revealed by molecular phylogenetic analyses of estuarine Gammarus species (Crustacea: Amphipoda) due to formation of the Labrador Current

Liyah Smith A B , Richard A. Long https://orcid.org/0000-0002-2204-9951 A B , Andrew G. Cannizzaro https://orcid.org/0000-0003-1280-1131 C and Thomas R. Sawicki https://orcid.org/0000-0001-7087-3577 A B *
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Florida A&M University (FAMU), Tallahassee, FL 32307, USA.

B NOAA Center for Coastal and Marine Ecosystems, FAMU, Tallahassee, FL 32307, USA.

C Department of Biology, Miami University, Oxford, OH 45056, USA.

* Correspondence to: thomas.sawicki@famu.edu

Handling Editor: Jo Wolfe

Invertebrate Systematics 38, IS24003 https://doi.org/10.1071/IS24003
Submitted: 5 January 2024  Accepted: 13 March 2024  Published: 16 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The metapopulation of the estuarine species Gammarus tigrinus along the east coast of the United States has been hypothesised to represent two cryptic species divided biogeographically off the coast of North Carolina, USA. This divergence has been attributed to a strong temperature gradient created by the formation of the cold Labrador Current c. 3.0 million years ago. In addition, the northern phylogeographic clade of G. tigrinus has been demonstrated to be invasive in estuarine habitats across a large portion of northern Europe. Recent collections of G. tigrinus from Florida and Maryland, USA, allow for new approaches to test this hypothesis. Using the nuclear 18S and 28S rRNA, and mitochondrial 16S rRNA and cytochrome c oxidase subunit I genes, species delimitation models provide support that the genetic divergence of the northern and southern clades is equivalent to species level. In addition, molecular clock data demonstrate that this phylogeographic divergence coincides with the formation of the Labrador Current. Furthermore, the collections of G. daiberi from Florida, a species with biogeographical and ecological characteristics similar to those of G. tigrinus, provide independent support for the hypothesis. The potential for invasive species to be cryptic highlights the need for accurate identification of taxa to ensure that appropriate biogeographical assessment of potential source populations and mechanisms of dispersal can be made.

Keywords: biogeography, cryptic species, Gammaridae, Gammarus tigrinus, invasive species, Labrador Current, phylogenetics, vicariance.

References

Adams NE, Inoue K, Seidel RA, Lang BK, Berg DJ (2018) Isolation drives increased diversification rates in freshwater amphipods. Molecular Phylogenetics & Evolution 127, 746-757.
| Crossref | Google Scholar | PubMed |

Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Ecology and Evolution 17, 42.
| Crossref | Google Scholar | PubMed |

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| Crossref | Google Scholar | PubMed |

Bousfield EL (1958) Fresh-water amphipod crustaceans of glaciated North America. Canadian Field-Naturalist 72, 55-113.
| Crossref | Google Scholar |

Bousfield EL (1969) New records of Gammarus (Crustacea: Amphipoda) from the middle Atlantic region. Chesapeake Science 10, 1-17.
| Crossref | Google Scholar |

Bousfield EL (1973) ‘Shallow-water Gammaridean Amphipoda of New England.’ (Cornell University Press)

Bousfield EL (1978) A revised classification and phylogeny of amphipod crustaceans. Transactions of the Royal Society of Canada, Series 4(16), 343-390.
| Google Scholar |

Cannizzaro AG, Sawicki TR (2019) Two new species of the genus Crangonyx Bate, 1859 (Amphipoda: Crangonyctidae) from the St Marks River Basin with notes on the “Crangonyx floridanus complex”. Zootaxa 4691, 301-332.
| Crossref | Google Scholar | PubMed |

Cannizzaro AG, Balding D, Lazo-Wasem EA, Sawicki TR (2020a) A new species rises from beneath Florida: molecular phylogenetic analyses reveal cryptic diversity among the metapopulation of Crangonyx hobbsi Shoemaker, 1941 (Amphipoda: Crangonyctidae). Organisms Diversity & Evolution 20, 387-404.
| Crossref | Google Scholar |

Cannizzaro AG, Gibson JR, Sawicki TR (2020b) A new enigmatic genus of subterranean amphipod (Amphipoda: Bogidielloidea) from Terrell County, Texas, with the establishment of Parabogidiellidae, fam. nov., and notes on the family Bogidiellidae. Invertebrate Systematics 34, 504-518.
| Crossref | Google Scholar |

Cannizzaro AG, Sisco JM, Sawicki TR (2022) Reappraisal of the Crangonyx floridanus species complex, with the description of a new species of Crangonyx Bate, 1859 (Amphipoda: Crangonyctidae) from northern Florida, USA. Journal of Crustacean Biology 42, 1-19.
| Crossref | Google Scholar |

Cole GA, Minckley WL (1961) A new species of amphipod crustacean (Genus Gammarus) from Kentucky. Transactions of the American Microscopical Society 80, 391-398.
| Crossref | Google Scholar |

Copilaş-Ciocianu D, Sidorov D, Gontcharov A (2019) Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Organisms Diversity and Evolution 19, 191-207.
| Crossref | Google Scholar |

Copilaş-Ciocianu D, Borko Š, Fišer C (2020) The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Paleozoic origin. Molecular Phylogenetics and Evolution 143, 106664.
| Crossref | Google Scholar | PubMed |

Englisch U, Koenemann S (2001) Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences. Organisms Diversity & Evolution 1, 139-145.
| Crossref | Google Scholar |

Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA, Vamberger M, Fritz U, Janke A (2016) Multi-locus analyses reveal four giraffe species instead of one. Current Biology 26, 2543-2549.
| Crossref | Google Scholar | PubMed |

Grabowski M, Mamos T, Bącela-Spychalska K, Rewicz T, Wattier RA (2017) Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016.
| Crossref | Google Scholar | PubMed |

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar | PubMed |

Holsinger JR (1976) ‘The freshwater amphipod crustaceans (Gammaridae) of North America.’ (US EPA)

Hou Z, Fu J, Li S (2007) A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45, 596-611.
| Crossref | Google Scholar | PubMed |

Hou Z, Sket B, Li S (2014) Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30, 352-365.
| Crossref | Google Scholar | PubMed |

Hou Z, Jin P, Liu H, Qiao H, Sket B, Cannizzaro AG, Berg DJ, Li S (2022) Past climate cooling promoted global dispersal of amphipods from Tian Shan montane lakes to circumboreal lakes. Global Change Biology 28, 3830-3845.
| Crossref | Google Scholar | PubMed |

Jażdżewski K, Kupryjanowicz J (2010) One more fossil niphargid (Malacostraca: Amphipoda) from Baltic amber. Journal of Crustacean Biology 30, 413-416.
| Crossref | Google Scholar |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.
| Crossref | Google Scholar | PubMed |

Kelly DW, MacIsaac HJ, Heath DD (2006a) Vicariance and dispersal effects on phylogeographic structure and speciation in a widespread estuarine invertebrate. Evolution 60, 257-267.
| Crossref | Google Scholar |

Kelly DW, Muirhead JR, Heath DD, MacIsaac HJ (2006b) Contrasting patterns in Genetic diversity following multiple invasions of fresh and brackish waters. Molecular Ecology 15, 3641-3653.
| Crossref | Google Scholar |

Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London – B. Biological Sciences 265, 2257-2263.
| Crossref | Google Scholar |

Knowlton N, Weigt LA, Solórzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260, 1629-1632.
| Crossref | Google Scholar | PubMed |

Kotta J, Pärnoja M, Katajisto T, Lehtiniemi M, Malavin SA, Reisalu G, Panov V (2013) Is a rapid expansion of the invasive amphipod Gammarus tigrinus Sexton, 1939 associated with its niche selection: a case study in the Gulf of Finland, the Baltic Sea. Aquatic Invasions 8, 319-332.
| Crossref | Google Scholar |

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695-1701.
| Crossref | Google Scholar | PubMed |

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selected partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772-773.
| Crossref | Google Scholar | PubMed |

LeCroy SE (2000) An Illustrated Identification Guide to the Nearshore Marine and Estuarine Gammaridean Amphipoda of Florida. Vol. 1. Families Gammaridae, Hadziidae, Isaeidae, Melitidae and Oedicerotidae. Annual report, Contract number WM724. (Florida Department of Environmental Protection)

MacDonald KS III, Yampolsky L, Duffy JE (2005) Molecular and morphological evaluation of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35, 323-343.
| Crossref | Google Scholar |

Mamos T, Wattier R, Majda A, Sket B, Grabowski M (2014) Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schäferna,(Crustacea: Amphipoda). Journal of Zoological Systematics and Evolutionary Research 52(3), 237-248.
| Crossref | Google Scholar |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188-1195.
| Crossref | Google Scholar | PubMed |

Myers AA (1993) Dispersal and endemicity in gammaridean Amphipoda. Journal of Natural History 27, 901-908.
| Crossref | Google Scholar |

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) ‘The Simple Fool’s Guide to PCR, Version 2.0.’ (University of Hawaii)

Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290.
| Crossref | Google Scholar | PubMed |

Pérez-Ponce de León G, Nadler SA (2010) What we don’t recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453-464.
| Crossref | Google Scholar | PubMed |

Popov SV, Bugrova EM, Amitrov OV, Andreyeva-Grigorovich AS, Akhmetiev MA, Zaporozhets NI, Nikolaeva IA, Sychevskaja EK, Shcherba IG (2004) Biogeography of the northern peri-tethys from the late Eocene to the early Miocene. Part 3. Late Oligocene-early Miocene Marine Basins. Paleontological Journal 38, S653-S716.
| Google Scholar |

Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609-620.
| Crossref | Google Scholar | PubMed |

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901-904.
| Crossref | Google Scholar | PubMed |

Rewicz T, Grabowski M, Tończyk G, Konopacka A, Bącela-Spychalska K (2019) Gammarus tigrinus Sexton, 1939 continues its invasion in the Baltic Sea: first record from Bornholm (Denmark). BioInvasions Records 8, 862-870.
| Crossref | Google Scholar |

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
| Crossref | Google Scholar | PubMed |

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
| Crossref | Google Scholar | PubMed |

Sexton EW, Cooper LHN (1939) On a new species of Gammarus (G. tigrinus) from Droitwich district. Journal of the Marine Biological Association of the United Kingdom 23, 543-551.
| Crossref | Google Scholar |

Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114-1116.
| Crossref | Google Scholar |

Sisco JM, Sawicki TR (2023) Molecular and morphological analyses reveal a new hypogean species of amphipod in the genus Crangonyx Bate, 1859 (Crustacea:Crangonyctidae) within the floridanus species complex, from Suwannee County, Florida. Journal of Natural History 57, 1257-1286.
| Crossref | Google Scholar |

Soubrier J, Steel M, Lee MS, Der Sarkissian C, Guindon S, Ho SY, Cooper A (2012) The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution 29, 3345-3358.
| Crossref | Google Scholar | PubMed |

Spikkeland I, Olsen JB, Kasbo R, Olsen KM, Nilssen JP (2020) The invasive amphipod Gammarus tigrinus Sexton, 1939 conquering the north of Europe using a new pathway: the first recordings from Norway. Fauna Norvegica 40, 130-136.
| Crossref | Google Scholar |

Szaniawska A, Łapucki T, Normant M (2003) The invasive amphipod Gammarus tigrinus Sexton, 1939, in Puck Bay. Oceanologia 45, 507-510.
| Google Scholar |

Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38, 3022-3027.
| Crossref | Google Scholar | PubMed |

Van Maren MJ (1978) Distribution and Ecology of Gammarus tigrinus Sexton, 1939 and some other Amphipod Crustacea near Beaufort (North Carolina, USA). Bijdragen Tot de Dierkunde 48, 45-56.
| Crossref | Google Scholar |

Wares JP (2001) Biogeography of Asterias: North Atlantic climate change and speciation. Biological Bulletin 201, 95-103.
| Crossref | Google Scholar | PubMed |

Wattier R, Mamos T, Copilaş-Ciocianu D, Jelić M, Ollivier A, Chaumot A, Danger M, Felten V, Piscart C, Žganec K, Rewicz T, Wysocka A, Rigaud T, Grabowski M (2020) Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Scientific Reports 10, 16536 PMCID: PMC7538970.
| Crossref | Google Scholar | PubMed |

Weiss M, Macher JN, Seefeldt MA, Leese F (2014) Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165-184.
| Crossref | Google Scholar |

Wellborn GA, Witt JDS, Cothran RD (2015) Class Malacostraca, superorders Peracarida and Syncarida. In ‘Thorp and Covich’s Freshwater Invertebrates’, 4th edn. (Eds JH Thorp, C Rogers) pp. 781–796. (Academic Press) 10.1016/B978-0-12-385026-3.00031-0

Westram AM, Jokela J, Baumgartner C, Keller I (2011) Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS One 6, e23879.
| Crossref | Google Scholar | PubMed |

White KN (2011) Nuclear 18S rDNA as a species-level molecular marker for Leucothoidae (Amphipoda). Journal of Crustacean Biology 31, 710-716.
| Crossref | Google Scholar |

White KN, Reimer JD (2012) DNA phylogeny of Ryukyus Leucothoidae (Crustacea:Amphipoda). Contributions to Zoology 81, 159-165.
| Crossref | Google Scholar |

Wilke T, Hauffe T, Jovanovska E, Cvetkoska A, Donders T, Ekschmitt K, Francke A, Lacey JH, Levkov Z, Marshall CR, Neubauer TA (2020) Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem. Science Advances 6, eabb2943.
| Crossref | Google Scholar | PubMed |

Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869-2876.
| Crossref | Google Scholar |