Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The subarctic ancient Lake El’gygytgyn harbours the world’s northernmost ‘limnostygon communityʼ and reshuffles crangonyctoid systematics (Crustacea, Amphipoda)

Denis Copilaş-Ciocianu https://orcid.org/0000-0002-6374-2365 A * , Alexander Prokin B , Evgeny Esin C , Fedor Shkil C , Dmitriy Zlenko C , Grigorii Markevich D and Dmitry Sidorov https://orcid.org/0000-0003-2635-9129 E
+ Author Affiliations
- Author Affiliations

A Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Vilnius, LT-08412, Lithuania.

B Papanin Institute for Biology of Inland Waters of RAS, Borok, RU-152742, Russian Federation.

C A.N. Severtsov Institute of Ecology and Evolution of RAS, Moscow, RU-119071, Russian Federation.

D Federal Wildlife Sanctuary “Kronotsky State Nature Biosphere Reserve”, Yelizovo, RU-684000, Russian Federation.

E Department of Invertebrate Zoology, Federal Scientific Center of the East Asia Terrestrial Biodiversity of FEBRAS, Vladivostok, RU-690022, Russian Federation.

* Correspondence to: denis.copilas-ciocianu@gamtc.lt

Handling Editor: Shane Ahyong

Invertebrate Systematics 38, IS24001 https://doi.org/10.1071/IS24001
Submitted: 2 January 2024  Accepted: 11 November 2024  Published: 9 December 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The northward distribution limit of groundwater fauna is generally dictated by the extent of glacial ice sheets during the Pleistocene. However, some taxa can be found far above this limit, sometimes on isolated oceanic islands, implying long-term survival in subglacial subterranean refugia. Here we report a peculiar assemblage comprising two new depigmented and blind (stygomorphic) amphipods from the subarctic ancient lake El’gygytgyn (northern Far East): Palearcticarellus hyperboreus sp. nov. and Pseudocrangonyx elgygytgynicus sp. nov. Molecular phylogenetic analyses based on five markers confirm their affinity to Crangonyctidae and Pseudocrangonyctidae, respectively. Fossil-calibrated molecular dating indicates that the ages of both species predate the onset of Pleistocene glaciations by at least an order of magnitude. Although both species are clearly adapted for subterranean life and are related to groundwater taxa, they are only known from the lake waters (5–170-m depth). Despite being nested within Pseudocrangonyctidae, P. elgygytgynicus has an atypical third uropod that preserves a vestigial inner ramus, a trait characteristic to the monotypic sister family Crymostygidae. Given that this character was the main distinguishing feature between the two families, we propose merging Crymostygidae with Pseudocrangonyctidae. Our findings represent the world’s northernmost record of stygomorphic amphipods, emphasising their relictual biogeography and the importance of Lake El’gygytgyn as a long-term, high latitude refugium for ancient pre-glacial fauna.

ZooBank: urn:lsid:zoobank.org:pub:3A51D1F8-E65D-4A3A-B663-D5C40272E68B

Keywords: Amphipoda, Crangonyctoidea, Crustacea, glacial refugium, high latitude, molecular dating, new species, phylogeny, sub-polar lakes, taxonomy.

References

Aberer AJ, Kobert K, Stamatakis A (2014) ExaBayes: massively parallel bayesian tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553-2556.
| Crossref | Google Scholar | PubMed |

Akulov NI, Mashchuk IM (2020) Становление Ангариды и палеогеографические условия зарождения на ее территории высших растений. Formation of Angaraland and palogeographic conditions of the higher plants generation in its territory. Труды Ферсмановской научной сессии ГИ КНЦ РАН [Proceedings of the Fersman Scientific Session of the GI KSC RAS] 17, 4-11 [In Russian, with title and abstract in Russian and English].
| Crossref | Google Scholar |

Andreev A, Dietze E, Glushkova O, Smirnov V, Wennrich V, Melles M (2021) The environment at Lake El’gygytgyn area (northeastern Russian Arctic) prior to and after the meteorite impact at 3.58 Ma. Frontiers in Earth Science 9, 636983.
| Crossref | Google Scholar |

Asochakov AA (1993) К методике измерения длины тела амфипод [Technique for measuring body length of amphipods.]. Гидробиологический журнал [Hydrobiological Journal] 29, 90-94 [In Russian].
| Google Scholar |

Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS, Gibbard PL, Stokes CR, Murton JB, Manica A (2019) The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10(1), 3713.
| Crossref | Google Scholar | PubMed |

Bauzà-Ribot MM, Juan C, Nardi F, Oromí P, Pons J, Jaume D (2012) Mitogenomic phylogenetic analysis supports continentalscale vicariance in subterranean thalassoid crustaceans. Current Biology 22(21), 2069-2074.
| Crossref | Google Scholar | PubMed |

Botosaneanu L (1986) ‘Stygofauna Mundi. A faunistic, distributional, and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial).’ (Brill: Leiden, Netherlands)

Cannizzaro AG, Balding D, Lazo-Wasem EA, Sawicki TR (2019) Morphological and molecular analyses reveal a new species of stygobitic amphipod in the genus Crangonyx (Crustacea: Crangonyctidae) from Jackson County, Florida, with a redescription of Crangonyx floridanus and notes on its taxonomy and biogeography. Journal of Natural History 53, 425-473.
| Crossref | Google Scholar |

Cannizzaro AG, Daniels JD, Berg DJ (2022) Phylogenetic analyses of a new freshwater amphipod reveal polyphyly within the Holarctic family Crangonyctidae, with revision of the genus Synurella. Zoological Journal of the Linnean Society 195(4), 1100-1115.
| Crossref | Google Scholar |

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972-1973.
| Crossref | Google Scholar | PubMed |

Cărăușu S, Dobreanu E, Manolache C (1955) ‘Fauna Republicii Populare Romîne. Crustacea. Amphipoda forme salmastre şi de apă dulce.’ (Editura Academiei RPR: Bucharest, Romania, USSR)

Chereshnev IA, Skopets MB (1990) Salvethymus svetovidovi gen. et sp. nova-новая эндемичная рыба из подсемейства лососевых (Salmoninae) из озера Эльгыгытгын (Центральная Чукотка) [Salvethymus svetovidovi gen. et sp. nova – a new endemic fish of the subfamily Salmoninae from Lake El’gygytgyn (Central Chukotka).]. Вопросы ихтиологии [Issues in Ichthyology] 30, 201-213 [In Russian].
| Google Scholar |

Chereshnev IA, Volobuev VV, Shestakov AV, Frolov SV (2002) ‘Лососевидные рыбы Северо-Востока России [Salmonid fishes in Russian North-East].’ (Дальнаука [Dal’nauka Press]: Vladivostok, Russian Federation) [In Russian]

Cockell CS, Lee P (2002) The biology of impact craters – a review. Biological Reviews of the Cambridge Philosophical Society 77, 279-310.
| Crossref | Google Scholar | PubMed |

Coleman CO (2004) Aquatic amphipods (Crustacea: Amphipoda: Crangonyctidae) in three pieces of Baltic amber. Organisms Diversity and Evolution 4, 119-122.
| Crossref | Google Scholar |

Copilaş-Ciocianu D, Boroş BV (2016) Contrasting life history strategies in a phylogenetically diverse community of freshwater amphipods (Crustacea: Malacostraca). Zoology 119(1), 21-29.
| Crossref | Google Scholar | PubMed |

Copilaş-Ciocianu D, Ionesi V (2024) New Miocene fossil taxa illuminate the evolution and paleobiogeography of the Ponto-Caspian gammaroid amphipod radiation. Contributions to Zoology 93, 268-288.
| Crossref | Google Scholar |

Copilaş-Ciocianu D, Fišer C, Borza P, Petrusek A (2018) Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Molecular Phylogenetics and Evolution 119, 37-49.
| Crossref | Google Scholar | PubMed |

Copilaş-Ciocianu D, Sidorov D, Gontcharov A (2019) Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods. Organisms Diversity & Evolution 19(2), 191-207.
| Crossref | Google Scholar |

Copilaş-Ciocianu D, Borko Š, Fišer C (2020) The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Molecular Phylogenetics and Evolution 143, 106664.
| Crossref | Google Scholar | PubMed |

Copilaş-Ciocianu D, Rewicz T, Sands AF, Palatov D, Marin I, Arbačiauskas K, Hebert PDN, Grabowski M, Audzijonyte A (2022) A DNA barcode reference library for endemic Ponto-Caspian amphipods. Scientific Reports 12(1), 11332.
| Crossref | Google Scholar |

Dietz RS, McHone JF (1976) El’gygytgyn: probably world’s largest meteorite crater. Geology 4, 391-392.
| Crossref | Google Scholar |

Dowding EM, Akulov NI, Mashchuk IM (2023) Survivorship dynamics of the flora of Devonian Angarida. Proceedings of the Royal Society of London – B. Biological Sciences 290, 20221079.
| Crossref | Google Scholar | PubMed |

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969-1973.
| Crossref | Google Scholar | PubMed |

Ebach MC, Dowding EM (2017) Theodor Arldt (1878–1960): parochial pauker and pioneering palaeobiogeographer. Zootaxa 4319(1), 157-168.
| Crossref | Google Scholar |

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar | PubMed |

Englisch U, Koenemann S (2001) Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences. Organisms Diversity & Evolution 1, 139-145.
| Crossref | Google Scholar |

Esin EV, Markevich GN, Zlenko DV, Shkil FN (2021) Thyroid-mediated metabolic differences underlie ecological specialization of extremophile salmonids in the Arctic Lake El’gygytgyn. Frontiers in Ecology and Evolution 9, 715110.
| Crossref | Google Scholar |

Frolov SV (1993) Unique karyotype and constitutive heterochromatin in the endemic Salmoninae fish Salvethymus svetovidovi. Journal of Ichthyology 33, 42-49.
| Google Scholar |

Gagarin VG, Gusakov VA (2022) Miconchus prokini sp. nov. (Nematoda: Mononchida) from lake El’gygytgyn, Chukotka, Russia. Nature Conservation Research 7(2), 88-94.
| Crossref | Google Scholar |

Ganelin VG (2021) Chapter 9. Main features of sedimentogenesis and ecogenesis in Late Paleozoic Sea pools of Northeast Asia. In ‘Geochemistry’. (Eds M René, G Aiello, G El Bahariya) pp. 576–557. (IntechOpen: London, UK) 10.5772/intechopen.91350

Geissbuehler M, Lasser T (2013) How to display data by color schemes compatible with red-green color perception deficiencies. Optics Express 21, 9862-9874.
| Crossref | Google Scholar | PubMed |

Gorodkov KB (1961) Простейший микропроектор для рисования насекомых [The simplest microprojector for drawing insects.]. Энтомологическое обозрение [Entomological Review] 40, 936-939 [In Russian].
| Google Scholar |

Gusakov VA, Gagarin VG, Shkil FN, Zlenko DV (2022) Eudorylaimus chukotkanus sp. n. and E. mylnikovi sp. n. (Nematoda: Dorylaimida) from Lake El’gygytgyn (Chukotka, Russia). Inland Water Biology 15, 97-106.
| Crossref | Google Scholar |

Hay WW, DeConto R, Wold CN, Wilson KM, Voigt S, Schulz M, Wold-Rossby A, Dullo W-C, Ronov AB, Balukhovsky, Soeding E (1999) Alternative global Cretaceous paleogeography. In ‘The Evolution of Cretaceous Ocean-Climate Systems’. (Eds E Barrera, CC Johnson) pp. 1–47. (Geological Society of America: Boulder, CO, USA)

Helaers R, Milinkovitch MC (2010) MetaPIGA v2. 0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics 11(1), 379.
| Crossref | Google Scholar | PubMed |

Holsinger JR (1974) Systematics of the subterranean amphipod genus Stygobromus (Gammaridae). Part I: Species of the western United States. Smithsonian Contributions to Zoology 160, 1-63.
| Google Scholar |

Holsinger JR (1977) ‘A review of the systematics of the Holarctic amphipod family Crangonyctidae. Crustaceana. Supplement. Vol. 4’. pp. 244–281. (Brill)

Holsinger JR (1989) Allocrangonyctidae and Pseudocrangonyctidae, two new families of Holarctic subterranean amphipod crustaceans (Gammaridea), with comments on their phylogenetic and zoogeographic relationships. Proceedings of the Biological Society of Washington 102, 947-959.
| Google Scholar |

Holsinger JR (1994) Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia 287, 131-145.
| Crossref | Google Scholar |

Holsinger JR, Carlson KR, Shaw DP (1997) Biogeographic significance of recently discovered amphipod crustaceans (Stygobromus) in caves of southeastern Alaska. Proceedings of the 12th International Congress of Speleology 3, 347-349.
| Google Scholar |

Jarzembowski EA, Chény C, Fang Y, Wang B (2020) First Mesozoic amphipod crustacean from the Lower Cretaceous of SE England. Cretaceous Research 112, 104429.
| Crossref | Google Scholar |

Jażdżewski K, Grabowski M, Kupryjanowicz J (2014) Further records of Amphipoda from Baltic Eocene amber with first evidence of prae-copulatory behaviour in a fossil amphipod and remarks on the taxonomic position of Palaeogammarus Zaddach, 1864. Zootaxa 3765(5), 401-417.
| Crossref | Google Scholar | PubMed |

Karaman GS (1970) Beitrag zur Kenntnis der Amphipoden 25. Kritische Bemerkungen über Echinogammarus acarinatus (S. Kar. 1931) und Echinogammarus stocki n. sp. XXV prilog poznavanju Amphipoda Kriticka zapažanja o vrstama Echinogammarus acarinatus (S. Kar. 1931) i Echinogammarus stocki n. sp. Poljoprivreda i Šumarstvo, Titograd 16(1–2), 45-66 [In German and Serbian].
| Google Scholar |

Karaman GS (1990) Contribution to the knowledge of the Amphipoda 204. New and interesting species of the genus Synurella Wrzes. 1877 (fam. Crangonyctidae) from Soviet Union (USSR). Glasnik Republickog Zavoda za Zastitu Prirode i Prirodnjackog Muzeja u Titogradu 23, 25-50 [In English with abstract in Serbian].
| Google Scholar |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4), 772-780.
| Crossref | Google Scholar | PubMed |

Kornobis E, Pálsson S, Kristjánsson BK, Svavarsson J (2010) Molecular evidence of the survival of subterranean amphipods (Arthropoda) during Ice Age underneath glaciers in Iceland. Molecular Ecology 19(12), 2516-2530.
| Crossref | Google Scholar | PubMed |

Kikuchi S, Matsumasa M (1993) The osmoregulatory tissue around the afferent blood vessels of the coxal gills in the estuarine amphipods, Grandidierella japonica and Melita setiflagella. Tissue and Cell 25(4), 627-638.
| Crossref | Google Scholar |

Kikuchi S, Matsumasa M (1995) Pereopodal disk: a new type of extrabranchial ion-transporting organ in an estuarine amphipod, Melita setiflagella (Crustacea). Tissue and Cell 27(6), 635-643.
| Crossref | Google Scholar |

Koenemann S, Holsinger J (1999) Phylogenetic analysis of the amphipod family Bogidiellidae s. lat., and revision of taxa above the species level. Crustaceana 72(8), 781-816.
| Crossref | Google Scholar |

Kornobis E, Pálsson S, Sidorov DA, Holsinger JR, Kristjánsson BK (2011) Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland. Molecular Phylogenetics and Evolution 58, 527-539.
| Crossref | Google Scholar | PubMed |

Krasheninnikov VA, Akhmetiev MA (1996) Late Eocene–Early Oligocene geological and biotical events on the territory of the former Soviet Union. Part I: the regional geology of the Upper Eocene and Lower Oligocene. Proceedings of the Geological Institute, Moscow 489, 1-314 [In Russian].
| Google Scholar |

Kristjánsson BK, Svavarsson J (2004) Crymostygidae, a new family of subterranean freshwater gammaridean amphipods (Crustacea) recorded from subarctic Europe. Journal of Natural History 38, 1881-1894.
| Crossref | Google Scholar |

Kupryjanowicz J, Jażdżewski K (2010) One more fossil Niphargid (Malacostraca: Amphipoda) from Baltic amber. Journal of Crustacean Biology 30, 413-416.
| Crossref | Google Scholar |

Lafuente E, Lürig MD, Rövekamp M, Matthews B, Buser C, Vorburger C, Räsänen K (2021) Building on 150 years of knowledge: the freshwater isopod Asellus aquaticus as an integrative eco-evolutionary model system. Frontiers in Ecology and Evolution 9, 748212.
| Crossref | Google Scholar |

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6), 1695-1701.
| Crossref | Google Scholar |

Lexikon M (1993) ‘‘Limnostygon’. Meyers Lexikonverlag, Ökologie.’ (Bibliographischen Institut: Mannheim, Germany)

Luštrik R, Turjak M, Kralj-Fišer S, Fišer C (2011) Coexistence of surface and cave amphipods in an ecotone environment. Contributions to Zoology 80, 133-41.
| Google Scholar |

McInerney CE, Maurice L, Robertson AL, Knight LRFD, Arnscheidt J, Venditti C, Dooley JSG, Mathers T, Matthijs S, Eriksson K, Proudlove GS, Hänfling B (2014) The ancient Britons: Groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Molecular Ecology 23, 1153-1166.
| Crossref | Google Scholar | PubMed |

Marin IN, Palatov DM (2021) The hidden diversity of the genus Lyurella Derzhavin, 1939 (Crustacea: Amphipoda: Crangonyctidae): four new species from the subterranean habitats of the northwestern Caucasus, Russia. Zootaxa 5006, 127-168.
| Crossref | Google Scholar | PubMed |

Marin I, Palatov D (2022) Uralocrangonyx gen.n. (Amphipoda: Crangonyctidae) from the southern Ural, Russia. Arthropoda Selecta 31, 183-195.
| Crossref | Google Scholar |

Marin IN, Yanygina LV, Ostroukhova SA (2023) A new minute species of the genus Palearcticarellus Palatov et Marin, 2020 (Crustacea: Amphipoda: Crangonyctidae) from a high-altitude mountain spring of the Altai Mountains (Russia). Arthropoda Selecta 32, 390-398.
| Crossref | Google Scholar |

Marin IN, Yanygina LV, Ostroukhova SA, Palatov D (2024) Populations of the stygobiotic amphipod Palearcticarellus pusillus (Martynov, 1930) maintain genetic connectivity between the mountain springs and the deep bottom habitats of Lake Teletskoye (Altai Mountains, Russia). International Journal of Speleology 53(3), 1-12.
| Crossref | Google Scholar |

Melles M, Brigham-Grette J, Minyuk P, Koeberl C, Andreev A, Cook T, Wennrich B (2011) The Lake El’gygytgyn scientific drilling project – conquering Arctic challenges through continental drilling. Scientific Drilling 11, 29-40.
| Crossref | Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Niemiller ML, Porter ML, Keany J, Gilbert H, Fong DW, Culver DC, Hobson CS, Kendall KD, Davis MA, Taylor SJ (2018) Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conservation Genetics Resources 10, 247-257.
| Crossref | Google Scholar |

Nowaczyk NR, Minyuk P, Melles M, Brigham-Grette J, Glushkova O, Nolan M, Lozhkin AV, Stetsenko TV, Andersen PM, Forman SL (2002) Magnetostratigraphic results from impact crater Lake El’gygytgyn, northeastern Siberia: a 300 kyr long high-resolution terrestrial palaeoclimatic record from the Arctic. Geophysical Journal International 150, 109-126.
| Crossref | Google Scholar |

Oleinik AG, Skurikhina LA, Kukhlevsky AD, Bondar EI (2019) Genetic differentiation of the Arctic phylogenetic group of charr from Northeast Asia and North America. Russian Journal of Genetics 55, 349-359.
| Crossref | Google Scholar |

Oleinik AG, Skurikhina LA, Kukhlevsky AD, Semenchenko AA (2021) The first complete mitochondrial genomes of two species of charr, Salvelinus boganidae and Salvelinus elgyticus, from Lake El’gygytgyn (Chukotka). Polar Biology 44, 1209-1217.
| Crossref | Google Scholar |

Osinov AG, Volkov AA (2020) On the origin of two species of charrs (Salvelinus, Salmonidae) in Lake El’gygytgyn: data on the ATPase6-NADH4L region of mitochondrial DNA. Journal of Ichthyology 60, 618-625.
| Crossref | Google Scholar |

Osinov AG, Senchukova AL, Mugue NS, Pavlov SD, Chereshnev IA (2015) Speciation and genetic divergence of three species of charr from ancient Lake El’gygytgyn (Chukotka) and their phylogenetic relationships with other representatives of the genus Salvelinus. Biological Journal of the Linnean Society 116, 63-85.
| Crossref | Google Scholar |

Osinski GR, Cockell CS, Pontefract A, Sapers HM (2020) The role of meteorite impacts in the origin of life. Astrobiology 20(9), 1121-1149.
| Crossref | Google Scholar | PubMed |

Palatov DM, Marin IN (2020) A new genus of the family Crangonyctidae (Crustacea, Amphipoda) from the Palaearctic, with descriptions of two new species from the foothills of the Altai Mountains. Zoologicheskii Zhurnal 99, 1160-1186.
| Crossref | Google Scholar |

Palatov DM, Marin IN (2021) When males and females belong to different genera: An interesting case of Synurella/Pontonyx (Crustacea: Amphipoda: Crangonyctidae) co-occurrence. Arthropoda Selecta 30, 443-472.
| Crossref | Google Scholar |

Pérez-Schultheiss J (2013) First species of the family Bogidiellidae Hertzog, 1936 (Crustacea: Amphipoda) in Chilean groundwaters: Patagongidiella wefkoi n. sp. Zootaxa 3694(2), 185-195.
| Crossref | Google Scholar |

Protection of the Arctic Marine Environment (2013) ‘Large marine ecosystems (LMEs) of the Arctic area. Revision of the Arctic LME map.’ (PAME Secretariat: Akureyri, Iceland)

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5), 901-904.
| Crossref | Google Scholar | PubMed |

Schmieder M, Kring DA (2020) Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91-141.
| Crossref | Google Scholar | PubMed |

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675.
| Crossref | Google Scholar | PubMed |

Sidorov DA, Gontcharov AA (2013) Studies on subterranean amphipod crustaceans of Primory, Russia. Part 1. Three new species of the genus Pseudocrangonyx from springs and other groundwater habitats in far eastern Russia. Zootaxa 3693, 547-567.
| Crossref | Google Scholar | PubMed |

Sidorov DA, Holsinger JR, Takhteev VV (2010) Two new species of the subterranean amphipod genus Stygobromus (Amphipoda: Crangonyctidae) from Siberia, with new data on Stygobromus pusillus (Martynov) and remarks on morphology and biogeographic relationships. Zootaxa 2478, 41-58.
| Crossref | Google Scholar |

Sidorov D, Labay V, Gontcharov A (2020) New species and records of the subterranean amphipod genus Pseudocrangonyx Akatsuka and Komai (Crustacea: Pseudocrangonyctidae), representing the northernmost distribution of the group. Journal of Natural History 54, 1759-1795.
| Crossref | Google Scholar |

Spicer RA, Herman AB (2001) The Albian–Cenomanian flora of the Kukpowruk River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant communities. Cretaceous Research 22, 1-40.
| Crossref | Google Scholar |

Spicer RA, Herman AB (2010) The Late Cretaceous environment of the Arctic: a quantitative reassessment based on plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 423-442.
| Crossref | Google Scholar |

Stein R (2019) The Late Mesozoic–Cenozoic Arctic Ocean climate and sea ice history: a challenge for past and future scientific ocean drilling. Paleoceanography and Paleoclimatology 34, 1851-1894.
| Crossref | Google Scholar |

Stock JH (1974) The systematics of certain Ponto-Caspian Gammaridae (Crustacea, Amphipoda). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 70, 75-95.
| Google Scholar |

Stock JH (1994) Biogeographic synthesis of the insular groundwater faunas of the (sub)tropical Atlantic. Hydrobiologia 287, 105-117.
| Crossref | Google Scholar |

Stokkan M, Jurado-Rivera JA, Oromí P, Juan C, Jaume D, Pons J (2018) Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetics and Evolution 127, 988-999.
| Crossref | Google Scholar | PubMed |

Svavarsson J, Kristjánsson BK (2006) Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland. Zootaxa 1365, 1-17.
| Crossref | Google Scholar |

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30(12), 2725-2729.
| Crossref | Google Scholar | PubMed |

Tomikawa K, Nakano T, Sato A, Onodera Y, Ohtaka A (2016) A molecular phylogeny of Pseudocrangonyx from Japan, including a new subterranean species (Crustacea, Amphipoda, Pseudocrangonyctidae). Zoosystematics and Evolution 92, 187-102.
| Crossref | Google Scholar |

Tomikawa K, Nishimoto Y, Nakahama N, Nakano T (2022) A new species of the genus Pseudocrangonyx (Crustacea: Amphipoda: Pseudocrangonyctidae) from Yonaguni Island, southwestern Japan, and historical biogeographic insights of pseudocrangonyctids. Zoological Science 39(5), 489-499.
| Crossref | Google Scholar | PubMed |

Väinölä R, Witt JDS, Grabowski M, Bradbury JH, Jazdzewski K, Sket B (2008) Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. In ‘Freshwater animal diversity assessment’. (Eds EV Balian, C Lévêque, H Segers, K Martens) pp. 241–255. (Springer: Dordrecht, Netherlands) 10.1007/s10750-007-9020-6

Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems 20, 5556-5564.
| Crossref | Google Scholar |

Zhang J, Holsinger JR (2003) Systematics of the freshwater amphipod genus Crangonyx (Crangonyctidae) in North America. Virginia Museum of Natural History Memoir 6, 1-274.
| Google Scholar |