Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

Towards a systematic revision of the superfamily Cyrenoidea (Bivalvia: Imparidentia): species delimitation, multi-locus phylogeny and mitochondrial phylogenomics

Ruiwen Wu https://orcid.org/0000-0002-8936-6054 A * , Lili Liu https://orcid.org/0009-0009-1164-7735 A , Xiongjun Liu B , Yingying Ye C , Xiaoping Wu D , Zhicai Xie E , Zhenyuan Liu E and Zhengfei Li https://orcid.org/0000-0003-3281-6015 E *
+ Author Affiliations
- Author Affiliations

A School of Life Science, Shanxi Normal University, Taiyuan, 030031, PR China.

B School of Life Science, Jiaying University, Meizhou, 514015, PR China.

C National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.

D School of Life Sciences, Nanchang University, Nanchang, 330031, PR China.

E Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.


Handling Editor: Gonzalo Giribet

Invertebrate Systematics 37(9) 607-622 https://doi.org/10.1071/IS23015
Submitted: 28 March 2023  Accepted: 21 August 2023   Published: 11 September 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Cyrenoidea is a superfamily of bivalves (Bivalvia: Imparidentia) currently comprising three families (Cyrenidae, Cyrenoididae and Glauconomidae). The superfamily is widely distributed in marine, brackish and freshwater environments, with an estimated 60 or more living species. Recent phylogenetic results have confirmed the monophyly of Cyrenoidea and placement in Venerida. Nevertheless, a comprehensive phylogenetic analysis of Cyrenoidea remains elusive and the phylogeny is unresolved due to inadequate sampling in previous studies. Moreover, the taxonomy and delimitation of most species, originally based on shell morphology, have not yet been tested with molecular data. Here, we constructed three molecular datasets by sequencing three markers (COI + 16S rRNA + 28S rRNA) and complete mitogenomes for Geloina coaxans (Gmelin, 1791) and Glauconome virens (Linnaeus, 1767). COI barcoding clarifies the validity of Geloina coaxans and Geloina erosa that have been subject to controversy regarding synonymy. Additionally, the barcoding supports the existence of multiple cryptic species within the Geloina expansa complex. A multi-locus dataset (COI + 16S rRNA + 28S rRNA) provides the most comprehensive phylogeny of all eight recognised genera of Cyrenoidea to date. Phylogenetic results indicate that the currently recognised family Cyrenidae is polyphyletic. The type species Geloina coaxans, Cyanocyclas limosa (Maton, 1811) and Polymesoda caroliniana (Bosc, 1801) that have long been classified within the family Cyrenidae based on shell morphology, have a closer relationship with Cyrenoida floridana Dall, 1896 than with other Cyrenidae. Therefore we transfer the genera Geloina, Cyanocyclas and Polymesoda from the family Cyrenidae to the family Cyrenoididae. The mitochondrial phylogenomics further support the family-level relationships in Cyrenoidea obtained from the three-gene analyses, confirming that the newly defined Cyrenoididae is closely related to Glauconomidae as the sister group. We observed a novel gene arrangement in Glauconome virens, the first report on the mitogenome of the family Glauconomidae, by comparing gene arrangements. Three patterns of gene rearrangement identified in Cyrenoidea are shared by the families Glauconomidae, Cyrenoididae and Cyrenidae, suggesting that gene arrangements can be a valuable tool for phylogenetic studies.

Keywords: Cyrenidae, Cyrenoididae, COI barcoding, gene order, Glauconomidae, Glauconome virens, mitochondrial genomes, molecular phylogeny, taxonomic revision.

References

Allen JA (2000) An unusual suctorial montacutid bivalve from the deep Atlantic. Journal of the Marine Biological Association of the United Kingdom 80(5), 827-834.
| Crossref | Google Scholar |

Araujo R, Buckley D, Nagel KO, García-Jiménez R, Machordom A (2018) Species boundaries, geographic distribution and evolutionary history of the Western Palaearctic freshwater mussels Unio (Bivalvia: Unionidae). Zoological Journal of the Linnean Society 182(2), 275-299.
| Crossref | Google Scholar |

Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E (2014) Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biology and Evolution 6(12), 3326-3343.
| Crossref | Google Scholar | PubMed |

Beesley PL, Ross GJB, Wells A (1998) ‘Mollusca: The Southern Synthesis. Fauna of Australia. Vol. 5.’ (CSIRO Publishing: Melbourne, Vic., Australia)

Benson AJ, Williams JD (2021) ‘Review of the invasive Asian clam Corbicula spp. (Bivalvia: Cyrenidae) distribution in North America, 1924–2019.’ (US Geological Survey)

Bespalaya YV, Aksenova OV, Gofarov MY, Kondakov AV, Kropotin AV, Kononov OD, Bolotov IN (2021) Who inhabits the world’s deepest crater lake? A taxonomic review of Corbicula (Bivalvia: Cyrenidae) clams from Lake Toba, North Sumatra, Indonesia. Journal of Zoological Systematics and Evolutionary Research 59, 400-410.
| Crossref | Google Scholar |

Bespalaya YV, Kropotin AV, Kondakov AV, Aksenova OV, Gofarov MY, Kim SK, Lee JH, Travina OV, Vikhrev IV, Vinarski MV, Bolotov IN (2023) A taxonomic reassessment of native and invasive species of Corbicula clams (Bivalvia: Cyrenidae) from the Russian Far East and Korea. Zoological Journal of the Linnean Society 197(1), 104-126.
| Crossref | Google Scholar |

Bieler R, Mikkelsen PM (2019) Cyrenidae Gray, 1840. In ‘Freshwater mollusks of the world. A distribution atlas’. (Eds C Lydeard, KS Cummings) pp. 187–192. (Johns Hopkins University Press: Baltimore, MD, USA)

Bieler R, Carter JG, Coan EV (2010) Classification of Bivalve families. Malacologia 52(2), 113-133.
| Google Scholar |

Bieler R, Mikkelsen PM, Collins TM, Glover EA, González VL, Graf DL, Harper EM, Healy J, Kawauchi GY, Sharma PP, Staubach S, Strong EE, Taylor JD, Tëmkin I, Zardus JD, Clark S, Guzmán A, McIntyre E, Sharp P, Giribet G (2014) Investigating the Bivalve Tree of Life-an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28(1), 32-115.
| Crossref | Google Scholar |

Bogan A (2013) ‘World checklist of freshwater Bivalvia species.’ (The Freshwater Animal Diversity Assessment, FADA: Brussels, Belgium)

Böhm M, Dewhurst-Richman NI, Seddon M, Ledger SEH, Albrecht C, Allen D, Bogan AE, Cordeiro J, Cummings KS, Cuttelod A, Darrigran G, Darwall W, Fehér Z, Gibson C, Graf DL, Köhler F, Lopes-Lima M, Pastorino G, Perez KE, Smith K, van Damme D, Vinarski MV, von Proschwitz T, von Rintelen T, Aldridge DC, Aravind NA, Budha PB, Clavijo C, Van Tu D, Gargominy O, Ghamizi M, Haase M, Hilton-Taylor C, Johnson PD, Kebapçı Ü, Lajtner J, Lange CN, Lepitzki DAW, Martínez-Ortí A, Moorkens EA, Neubert E, Pollock CM, Prié V, Radea C, Ramirez R, Ramos MA, Santos SB, Slapnik R, Son MO, Stensgaard A-S, Collen B (2021) The conservation status of the world’s freshwater molluscs. Hydrobiologia 848, 3231-3254.
| Crossref | Google Scholar |

Bolotov IN, Vikhrev IV, Kondakov AV, Konopleva ES, Gofarov MY, Aksenova OV, Tumpeesuwan S (2017) New taxa of freshwater mussels (Unionidae) from a species-rich but overlooked evolutionary hotspot in Southeast Asia. Scientific Reports 7, 11573.
| Crossref | Google Scholar | PubMed |

Boore JL (2000) The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In ‘Comparative Genomics. Computational Biology. Vol. 1’. (Eds D Sankoff, JH Nadeau) pp. 133–147. (Springer: Dordrecht, Netherlands)

Boore JL, Brown WM (1994) Mitochondrial genomes and the phylogeny of mollusks. The Nautilus 108(2), 61-78.
| Google Scholar |

Boore JL, Daehler LL, Brown WM (1999) Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus). Molecular Biology and Evolution 16(3), 410-418.
| Crossref | Google Scholar | PubMed |

Bouchet P, Rocroi JP (2010) Nomenclator of bivalve families with a classification of bivalve families by R. Bieler, J.G. Carter & E.V. Coan. Malacologia 52(2), 1-184.
| Google Scholar |

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10(4), e1003537.
| Crossref | Google Scholar | PubMed |

Breure ASH, Roosen MT, Ablett JD (2022) Land and freshwater molluscs of mainland Ecuador: an illustrated checklist. Iberus 40(1), 1-290.
| Google Scholar |

Carter JG, Campbell DC, Campbell MR (2000) Cladistic perspectives on early bivalve evolution. Geological Society, London, Special Publications 177(1), 47-79.
| Crossref | Google Scholar |

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.
| Crossref | Google Scholar | PubMed |

Coan EV, Valentich-Scott P (2012) Bivalve seashells of tropical West America. Marine bivalve mollusks from Baja California to northern Peru. Santa Barbara Museum of Natural History 2, 1258.
| Google Scholar |

Combosch DJ, Collins TM, Glover EA, Graf DL, Harper EM, Healy JM, Kawauchi GY, Lemer S, Mcintyre E, Strong EE, Taylor JD, Zardus JD, Mikkelsen PM, Giribet G, Bieler R (2017) A family-level Tree of Life for bivalves based on a Sanger-sequencing approach. Molecular Phylogenetics and Evolution 107, 191-208.
| Crossref | Google Scholar | PubMed |

Cope JCW (2000) A new look at early bivalve phylogeny. In ‘The Evolutionary Biology of the Bivalvia. Vol. 177(1)’. (Eds EM Harper, JD Taylor, JA Crame) pp. 81–95. (Geological Society of London)

Crouch NMA, Edie SM, Collins KS, Bieler R, Jablonski D (2021) Calibrating phylogenies assuming bifurcation or budding alters inferred macroevolutionary dynamics in a densely sampled phylogeny of bivalve families. Proceedings of the Royal Society of London – B. Biological Sciences 288, 20212178.
| Crossref | Google Scholar | PubMed |

Dall WH (1896) On the American species of Cyrenoidea. The Nautilus 10(5), 51-52.
| Google Scholar |

Dall WH (1903) Review of the classification of the Cyrenacea. Proceedings of the Biological Society of Washington 16, 5-8.
| Google Scholar |

De Joannis L (1835) Cyrénoïde. Cyrenoïda Joannis. In ‘Magasin de Zoologie. 5. Classe V’ [‘Magazine of Zoology. 5 Class V’]. [In French]

Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research 47(20), 10543-10552.
| Crossref | Google Scholar | PubMed |

Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the hymenoptera. Molecular Biology and Evolution 16(2), 298-309.
| Crossref | Google Scholar | PubMed |

Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar | PubMed |

Froufe E, Bolotov I, Aldridge DC, Bogan AE, Breton S, Gan HM, Kovitvadhi U, Kovitvadhi S, Riccardi N, Secci-Petretto G, Sousa R, Teixeira A, Varandas S, Zanatta D, Zieritz A, Fonseca MM, Lopes-Lima M (2020) Mesozoic mitogenome rearrangements and freshwater mussel (Bivalvia: Unionoidea) macroevolution. Heredity 124, 182-196.
| Crossref | Google Scholar | PubMed |

Giribet G, Wheeler W (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121(4), 271-324.
| Crossref | Google Scholar |

Glaubrecht M, Fehér Z, Von Rintelen T (2006) Brooding in Corbicula madagascariensis (Bivalvia, Corbiculidae) and the repeated evolution of viviparity in corbiculids. Zoologica Scripta 35, 641-654.
| Crossref | Google Scholar |

Gmelin JF (1791) ‘Caroli a Linné. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis.’ [‘Charles Linnaeus. The system of nature through the three kingdoms of nature: according to classes, orders, genera, species, with characters, differences, synonyms, places.’] (Lipsiae, impensis Georg. Emanuel) [In Latin]

Gomes C, Sousa R, Mendes T, Borges R, Vilares P, Vasconcelos V, Guilhermino L, Antunes A (2016) Low genetic diversity and high invasion success of Corbicula fluminea (Bivalvia, Corbiculidae) (Müller, 1774) in Portugal. PLoS One 11, e0158108.
| Crossref | Google Scholar | PubMed |

González VL, Andrade SCS, Bieler R, Collins TM, Dunn CW, Mikkelsen PM, Taylor JD, Giribet G (2015) A phylogenetic backbone for Bivalvia: an RNA-seq approach. Proceedings of the Royal Society of London – B. Biological Sciences 282(1801), 20142332.
| Crossref | Google Scholar | PubMed |

Graf DL, Cummings KS (2021) A ‘big data’ approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. Journal of Molluscan Studies 87(1), eyaa034.
| Crossref | Google Scholar |

Gray JE (1840) ‘Synopsis of the Contents of the British Museum’, 42nd edn. (Woodfall & Kinder: London, UK)

Gray JE (1853) V.—A revision of the genera of some of the families of Conchifera or bivalve shells. Annals and Magazine of Natural History 11(2), 33-44.
| Crossref | Google Scholar |

He J, Zhuang Z (2013) ‘The Freshwater Bivalves of China.’ (ConchBooks: Hackenheim, Germany)

Hinds RB (1842) XIII.—Descriptions of new shells. Annals and Magazine of Natural History 10(63), 81-84.
| Crossref | Google Scholar |

Huang XC, Rong J, Liu Y, Zhang MH, Wan Y, Ouyang S, Zhou CH, Wu XP (2013) The complete maternally and paternally inherited mitochondrial genomes of the endangered freshwater mussel Solenaia carinatus (Bivalvia: Unionidae) and implications for Unionidae taxonomy. PLoS One 8(12), e84352.
| Crossref | Google Scholar |

Huber M (2015) ‘Compendium of Bivalves 2.’ (ConchBooks: Harxheim, Germany)

Johnston PA, Haggart JW, Waller TR (1998) ‘Origin of the molluscan class Bivalvia and a phylogeny of major groups.’ (University of Calgary Press: Calgary, AC, Canada)

Jones G (2017) Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74, 447-467.
| Crossref | Google Scholar | PubMed |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33(11), 1630-1638.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4), 772-780.
| Crossref | Google Scholar | PubMed |

Keen AM, McLean JH (1971) ‘Sea shells of tropical west America: marine mollusks from Baja California to Peru.’ (Stanford University Press: Stanford, CA, USA)

Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477(7365), 452-456.
| Crossref | Google Scholar | PubMed |

Kondakov AV, Konopleva ES, Adesanya AJ, Bespalaya YV, Braun JJ, Gofarov MY, Lyubas AA, Tomilova AA, Vikhrev IV, Pokrovsky OS, Bolotov IN (2020) The global freshwater bivalve checklist’s extension: Freshwater occurrences and phylogenetic position of Galatea clams from West Africa (Venerida: Donacidae). Ecologica Montenegrina 35, 144-158.
| Crossref | Google Scholar |

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 1870-1874.
| Crossref | Google Scholar | PubMed |

Kurabayashi A, Ueshima R (2000) Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome organization. Molecular Biology and Evolution 17(2), 266-277.
| Crossref | Google Scholar | PubMed |

Lamarck J-BM (1818) ‘Histoire naturelle des animaux sans vertèbres. Tome 5.’ [‘Natural history of animals without vertebrae. Volume 5.’] (Deterville/Verdière: Paris, France) [In French]

Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6), 1695-1701.
| Crossref | Google Scholar | PubMed |

Lemer S, Bieler R, Giribet G (2019) Resolving the relationships of clams and cockles: dense transcriptome sampling drastically improves the bivalve tree of life. Proceedings of the Royal Society of London – B. Biological Sciences 286, 20182684.
| Crossref | Google Scholar | PubMed |

Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23(1), 127-128.
| Crossref | Google Scholar | PubMed |

Liao X, Zhu X, Yang M (2020) Complete mitochondrial DNA genomes for Geloina erosa (Veneroida: Corbiculidae). Mitochondrial DNA B 5(2), 1590-1591.
| Crossref | Google Scholar |

Liu JY (2008) ‘Checklist of marine biota of China seas.’ (China Science Publishing & Media Ltd)

Lopes-Lima M, Fonseca MM, Aldridge DC, Bogan AE, Gan HM, Ghamizi M, Sousa R, Teixeira A, Varandas S, Zanatta D, Zieritz A, Froufe E (2017) The first Margaritiferidae male (M-type) mitogenome: mitochondrial gene order as a potential character for determining higher-order phylogeny within Unionida (Bivalvia). Journal of Molluscan Studies 83(2), 249-252.
| Crossref | Google Scholar |

Lv C, Li Q, Kong L (2018) Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae. PLoS One 13(5), e0196466.
| Crossref | Google Scholar |

Matsumoto M (2003) Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Molecular Phylogenetics and Evolution 27, 429-440.
| Crossref | Google Scholar | PubMed |

Mikkelsen PM, Bieler R, Kappner I, Rawlings TA (2006) Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules. Zoological Journal of the Linnean Society 148, 439-521.
| Crossref | Google Scholar |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30(5), 1188-1195.
| Crossref | Google Scholar | PubMed |

MolluscaBase (2022) Cyrenoidea J. E. Gray, 1840. In ‘MolluscaBase’. (World Register of Marine Species) Available at https://www.molluscabase.org/aphia.php?p=taxdetails&id=238370

MolluscaBase (2023a) Geloina coaxans (Gmelin, 1791). In ‘MolluscaBase’. (World Register of Marine Species) Available at https://www.molluscabase.org/aphia.php?p=taxdetails&id=991955

MolluscaBase (2023b) Glauconome J. E. Gray, 1828. In ‘MolluscaBase’. (World Register of Marine Species) Available at https://www.molluscabase.org/aphia.php?p=taxdetails&id=492515

Morton B (1976) The biology and functional morphology of the Southeast Asian mangrove bivalve, Polymesoda (Geloina) erosa (Solander, 1786) (Bivalvia: Corbiculidae). Canadian Journal of Zoology 54(4), 482-500.
| Crossref | Google Scholar |

Newell ND (1965) Classification of the Bivalvia. American Museum Novitates 2206, 1-25.
| Google Scholar |

Newell ND, Boyd DW (1978) A palaeontologist’s view of bivalve phylogeny. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 284(1001), 203-214.
| Crossref | Google Scholar |

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1), 268-274.
| Crossref | Google Scholar | PubMed |

Okamoto A, Arimoto B (1986) Chromosomes of Corbicula japonica, Corbicula sandai and Corbicula leana (Bivalvia: Corbiculidae). Venus the Japanese Journal of Malacology 45(3), 194-202.
| Google Scholar |

Ota Y, Ohta Y (1970) A review of some Cretaceous corbiculids in North America. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 79, 291-315.
| Google Scholar |

Park JK, Kim W (2003) Two Corbicula (Corbiculidae: Bivalvia) mitochondrial lineages are widely distributed in Asian freshwater environment. Molecular Phylogenetics and Evolution 29(3), 529-539.
| Crossref | Google Scholar | PubMed |

Park JK, Ó Foighil D (2000) Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14(1), 75-88.
| Crossref | Google Scholar | PubMed |

Pereira D, Mansur MCD, Duarte LDS, de Oliveira AS, Pimpão DM, Callil CT, Ituarte C, Parada E, Peredo S, Darrigran G, Scarabino F, Clavijo C, Lara G, Miyahir IC, Rodriguez MTR, Lasso C (2014) Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735, 15-44.
| Crossref | Google Scholar |

Pigneur LM, Etoundi E, Aldridge DC, Marescaux J, Yasuda N, Van Doninck K (2014) Genetic uniformity and long-distance clonal dispersal in the invasive androgenetic Corbicula clams. Molecular Ecology 23, 5102-5116.
| Crossref | Google Scholar | PubMed |

Plazzi F, Ribani A, Passamonti M (2013) The complete mitochondrial genome of Solemya velum (Mollusca: Bivalvia) and its relationships with Conchifera. BMC Genomics 14, 409.
| Crossref | Google Scholar | PubMed |

Popham JD (1979) Comparative spermatozoon morphology and bivalve phylogeny. Malacological Review 12(1–2), 1-20.
| Google Scholar |

Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21(8), 1864-1877.
| Crossref | Google Scholar | PubMed |

Rahuman S, Jeena NS, Asokan PK, Vidya R, Vijayagopal P (2020) Mitogenomic architecture of the multivalent endemicblack clam (Villorita cyprinoides) and its phylogenetic implications. Scientific Reports 10, 15438.
| Crossref | Google Scholar | PubMed |

Reeve LA (1843) Monograph of the genus Glauconome. In ‘Conchologia iconica, or, illustrations of the shells of molluscous animals. Vol. 2’. (L. Reeve & Co.: London, UK) 10.5962/bhl.title.8129

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539-42.
| Crossref | Google Scholar | PubMed |

Roy K, Hunt G, Jablonski D, Krug AZ, Valentine JW (2009) A macroevolutionary perspective on species range limits. Proceedings of the Royal Society of London – B. Biological Sciences 276, 1485-1493.
| Crossref | Google Scholar | PubMed |

Schneider JA (2001) Bivalve systematics during the 20th century. Journal of Paleontology 75(6), 1119-1127.
| Crossref | Google Scholar |

Sharma PP, Wheeler WC (2013) Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography 40, 1609-1618.
| Crossref | Google Scholar |

Sharma PP, González VL, Kawauchi GY, Andrade SC, Guzmán A, Collins TM, Glover EA, Harper EM, Healy JM, Mikkelsen PM, Taylor JD, Bieler R, Giribet G (2012) Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Molecular Phylogenetics and Evolution 65(1), 64-74.
| Crossref | Google Scholar | PubMed |

Sharma PP, Zardus JD, Boyle EE, González VL, Jennings RM, McIntyre E, Wheeler WC, Etter RJ, Giribet G (2013) Into the deep: a phylogenetic approach to the bivalve subclass Protobranchia. Molecular Phylogenetics and Evolution 69(1), 188-204.
| Crossref | Google Scholar | PubMed |

Siripattrawan S, Park JK, Foighil DÓ (2000) Two lineages of the introduced Asian freshwater clam Corbicula occur in North America. Journal of Molluscan Studies 66, 423-429.
| Crossref | Google Scholar |

Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364-367.
| Crossref | Google Scholar | PubMed |

Smith CH, Johnson NA, Inoue K, Doyle RD, Randklev CR (2019) Integrative taxonomy reveals a new species of freshwater mussel, Potamilus streckersoni sp. nov. (Bivalvia: Unionidae): Implications for conservation and management. Systematics and Biodiversity 17(4), 331-348.
| Crossref | Google Scholar |

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312-1313.
| Crossref | Google Scholar | PubMed |

Steiner G, Müller M (1996) What can 18S rDNA do for bivalve phylogeny? Journal of Molecular Evolution 43, 58-70.
| Crossref | Google Scholar | PubMed |

Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zoological Journal of the Linnean Society 148, 421-438.
| Crossref | Google Scholar |

Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of the Bivalvia Introduction. Nuculacea—Trigonacea. Bulletin of the British Museum (Natural History) Zoology 3, 1-125.
| Google Scholar |

Taylor JD, Williams ST, Glover EA, Dyal P (2007) A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zoologica Scripta 36, 587-606.
| Crossref | Google Scholar |

Taylor JD, Glover EA, Williams ST (2009) Phylogenetic position of the bivalve family Cyrenoididae—removal from (and further dismantling of) the superfamily Lucinoidea. The Nautilus 123(1), 9-13.
| Google Scholar |

Turgeon DD, Quinn JF, Bogan AE, Coan EV, Hochberg FG, Lyons WG, Mikkelsen PM, Neves RJ, Roper CFE, Rosenberg G, Roth B, Scheltema A, Thompson FG, Vecchione M, Williams JD (1998) ‘Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: Mollusks.’ Special Publication 26. (American Fisheries Society) 10.47886/9781888569018

Valentas-Romera BL, Simone LRL, Mikkelsen PM, Bieler R (2019) Anatomical redescription of Cyrenoida floridana (Bivalvia, Cyrenoididae) from the Western Atlantic and its position in the Cyrenoidea. Zoosystematics and Evolution 95(2), 517-534.
| Google Scholar |

Vaughn CC, Hoellein TJ (2018) Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 49(1), 183-208.
| Crossref | Google Scholar |

Walker JM, Bogan AE, Bonfiglio EA, Campbell DC, Christian AD, Curole JP, Harris JL, Wojtecki RJ, Hoeh WR (2007) Primers for amplifying the hypervariable, male-transmitted COII–COI junction region in amblemine freshwater mussels (Bivalvia: Unionoidea: Ambleminae). Molecular Ecology Notes 7(3), 489-491.
| Crossref | Google Scholar |

Williams ST, Taylor JD, Glover EA (2004) Molecular phylogeny of the Lucinoidea (Bivalvia): non-monophyly and separate acquisition of bacterial chemosymbiosis. Journal of Molluscan Studies 70(2), 187-202.
| Crossref | Google Scholar |

Wu RW, Liu YT, Wang S, Liu XJ, Zanatta DT, Roe KJ, Song XL, An CT, Wu XP (2018) Testing the utility of DNA barcodes and a preliminary phylogenetic framework for Chinese freshwater mussels (Bivalvia: Unionidae) from the middle and lower Yangtze River. PLoS One 13(8), e0200956.
| Crossref | Google Scholar |

Wu RW, Liu XJ, Wang S, Roe KJ, Ouyang S, Wu XP (2019) Analysis of mitochondrial genomes resolves the phylogenetic position of Chinese freshwater mussels (Bivalvia, Unionidae). ZooKeys 812(6), 23-46.
| Crossref | Google Scholar | PubMed |

Wu RW, An JM, Chen R, Ouyang S, Wu XP (2021) 基于多位点分子标记和线粒体基因组学中国蚌类(蚌目:蚌超科)物种分类与系统进化研究 [Taxonomy, phylogeny and evolution of freshwater mussels (Unionoida: Unionoidea) in China revealed by multilocus phylogenetic analyses and mitochondrial phylogenomics.]. 湖泊科学 [Journal of Lake Sciences] 33(6), 1788-1804 [In Chinese with English title and abstract].
| Crossref | Google Scholar |

Wu XP, Dai YT, Yin N, Shu FY, Chen ZG, Guo L, Zhou CH, Ouyang S, Huang XC (2022) Mitogenomic phylogeny resolves Cuneopsis (Bivalvia: Unionidae) as polyphyletic: the description of two new genera and a new species. Zoologica Scripta 51(2), 173-184.
| Crossref | Google Scholar |

Yamada M, Ishibashi R, Toyoda K, Kawamura K, Komaru A (2014) Phylogeography of the brackish water clam Corbicula japonica around the Japanese archipelago inferred from mitochondrial COII gene sequences. Zoological Science 31(3), 168-79.
| Crossref | Google Scholar | PubMed |

Yuan Y, Li Q, Yu H, Kong L (2012) The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS One 7, e32353.
| Crossref | Google Scholar |

Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20, 348-355.
| Crossref | Google Scholar | PubMed |