Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

Cosmopolitan abyssal lineages? A systematic study of East Pacific deep-sea squat lobsters (Decapoda: Galatheoidea: Munidopsidae)

Paula C. Rodríguez-Flores https://orcid.org/0000-0003-1555-9598 A * , Charlotte A. Seid https://orcid.org/0000-0002-5307-691X B , Greg W. Rouse https://orcid.org/0000-0001-9036-9263 B and Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 A
+ Author Affiliations
- Author Affiliations

A Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.


Handling Editor: Shane Ahyong

Invertebrate Systematics 37(1) 14-60 https://doi.org/10.1071/IS22030
Submitted: 1 July 2022  Accepted: 9 November 2022   Published: 11 January 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Munidopsid squat lobsters are among the most abundant decapods at abyssal depths and the most diverse squat lobster group in the East Pacific region. During recent cruises along the East Pacific, many deep-sea squat lobsters were collected. Among these, we described five new munidopsid species supported both by morphological characters and molecular phylogenetics: Munidopsis girguisi sp. nov., M. nautilus sp. nov., M. testuda sp. nov., M. cortesi sp. nov. and M. hendrickxi sp. nov. We also report new records of several Munidopsis species across the East Pacific that increase the species distribution ranges. Here, we reconstructed the phylogenetic relationships of the East Pacific species in relation to other Galatheoidea using one nuclear and two mitochondrial gene fragment(s); we also performed single locus species delimitation analyses to explore the species status of various East Pacific munidopsid taxa. The new taxa were photographed, illustrated and imaged with micro-computed tomography. The phylogenetic results show that: (1) Janetogalathea californiensis, previously included in the family Galatheidae, nests within Munidopsidae; (2) the phylogenetic position of Phylladiorhynchus and Coralliogalathea as belonging in Galatheidae is not supported; and (3) Munidopsis is paraphyletic, agreeing with recent systematic hypotheses. Short genetic distances and species delimitation analyses suggested that a clade mostly constituted by abyssal species might include fewer species than currently considered, as species show a wider geographic range than previously considered, conforming with traditional hypotheses of cosmopolitanisms in abyssal species.

ZooBank: urn:lsid:zoobank.org:pub:CED9EB18-7061-47A7-B2FF-7F1DAFCC7B12.

Keywords: crustaceans, long-distance dispersal, microCT, mitochondrial genes, morphology, new species, species delimitation, taxonomy.


References

Ahyong ST, Schnabel KE, Maas EW (2009) Anomuran phylogeny: new insights from molecular data. In ‘Decapod Crustacean Phylogenetics’. (Eds JW Martin, DL Felder, KA Crandall) Crustacean Issues, vol. 18, pp. 399–341. (CRC Press: Boca Raton, FL, USA)

Ahyong, ST, Baba, K, Macpherson, E, and Poore, GCB (2010). A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura). Zootaxa 2676, 57–68.
A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura).Crossref | GoogleScholarGoogle Scholar |

Ahyong, ST, Andreakis, N, and Taylor, J (2011). Mitochondrial phylogeny of the deep-sea squat lobsters, Munidopsidae (Galatheoidea). Zoologischer Anzeiger – a Journal of Comparative Zoology 250, 367–377.
Mitochondrial phylogeny of the deep-sea squat lobsters, Munidopsidae (Galatheoidea).Crossref | GoogleScholarGoogle Scholar |

Arnés-Urgellés, C, Buglass, S, Ahyong, ST, Salinas-de-León, P, Wicksten, MK, and Marsh, L (2020). Arthropoda; crustacea; decapoda of deep-sea volcanic habitats of the galapagos marine reserve, tropical eastern pacific. Biodiversity Data Journal 8, e54482.
Arthropoda; crustacea; decapoda of deep-sea volcanic habitats of the galapagos marine reserve, tropical eastern pacific.Crossref | GoogleScholarGoogle Scholar |

Baba, K (2005). Deep-sea chirostylid and galatheid crustaceans (Decapoda: Anomura) from the Indo-Pacific, with a list of species. Galathea Report 20, 1–317.

Baba , K, and Wicksten , MK (2019). Chirostyloidean squat lobsters (Crustacea: Decapoda: Anomura) from the Galapagos Islands. Zootaxa 4564, 391–421.
Chirostyloidean squat lobsters (Crustacea: Decapoda: Anomura) from the Galapagos Islands.Crossref | GoogleScholarGoogle Scholar |

Baba, K, Macpherson, E, Poore, GCB, Ahyong, ST, Bermudez, A, Cabezas, P, Lin, C-W, Nizinski, M, Rodrigues, C, and Schnabel, KE (2008). Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura – families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa 1905, 1–220.
Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura – families Chirostylidae, Galatheidae and Kiwaidae).Crossref | GoogleScholarGoogle Scholar |

Baba K, Macpherson E, Lin CW, Chan TY (2009) ‘Crustacean Fauna of Taiwan. Squat lobsters (Chirostylidae and Galatheidae).’ (National Taiwan Ocean University: Keelung, Taiwan)

Baba K, Ahyong ST, Macpherson E (2011) Morphology of marine squat lobsters. In ‘The Biology of Squat Lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 1–38. (CSIRO Publishing: Melbourne, Vic., Australia)

Baco, AR, Etter, RJ, Ribeiro, PA, von der Heyden, S, Beerli, P, and Kinlan, BP (2016). A synthesis of genetic connectivity in deep‐sea fauna and implications for marine reserve design. Molecular Ecology 25, 3276–3298.
A synthesis of genetic connectivity in deep‐sea fauna and implications for marine reserve design.Crossref | GoogleScholarGoogle Scholar |

Bahamonde, N (1964). Dos nuevos Munidopsis en aguas Chilenas Boletín del Museo Nacional de Historia Natural 28, 157–170.

Benedict, JE (1902). Descriptions of a new genus and forty-six new species of crustaceans of the family Galatheidae, with a list of the known marine species. Proceedings of the United States National Museum 26, 243–334.
Descriptions of a new genus and forty-six new species of crustaceans of the family Galatheidae, with a list of the known marine species.Crossref | GoogleScholarGoogle Scholar |

Blouin, MS, Yowell, CA, Courtney, CH, and Dame, JB (1998). Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution 15, 1719–1727.
Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics.Crossref | GoogleScholarGoogle Scholar |

Borda, E, Kudenov, JD, Chevaldonné, P, Desbruyères, D, Blake, JA, Fabri, M-C, Hourdez, S, Shank, TM, Wilson, NG, Pleijel, F, Schulze, A, and Rouse, GW (2013). Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proceedings of the Royal Society of London Series B: Biological Sciences 280, 20131876.
Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R, Vaughan, TG, Barido-Sottani, J, Duchêne, S, Fourment, M, Gavryushkina, A, Heled, J, Jones, G, Kühnert, D, De Maio, N, Matschiner, M, Mendes, FK, Müller, NF, Ogilvie, HA, du Plessis, L, Popinga, A, Rambaut, A, Rasmussen, D, Siveroni, I, Suchard, MA, Wu, CH, Xie, D, Zhang, C, Stadler, T, and Drummond, AJ (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, HD, Cannon, ME, Cabezas, P, Feldmann, RM, Schweitzer, CE, Ahyong, ST, Felder, DL, Lemaitre, R, and Crandall, KA (2013). A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology 13, 128.
A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Brandão, SN, and Yasuhara, M (2013). Challenging deep-sea cosmopolitanism: taxonomic re-evaluation and biogeography of ‘Cythere dasyderma Brady, 1880’ (Ostracoda). Journal of Micropalaeontology 32, 109–122.
Challenging deep-sea cosmopolitanism: taxonomic re-evaluation and biogeography of ‘Cythere dasyderma Brady, 1880’ (Ostracoda).Crossref | GoogleScholarGoogle Scholar |

Breusing, C, Johnson, SB, Tunnicliffe, V, Clague, DA, Vrijenhoek, RC, and Beinart, RA (2020). Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Molecular Biology and Evolution 37, 3469–3484.
Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails.Crossref | GoogleScholarGoogle Scholar |

Cabezas, P, Sanmartín, I, Paulay, G, Macpherson, E, and Machordom, A (2012). Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae). Evolution 66, 1878–1896.
Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae).Crossref | GoogleScholarGoogle Scholar |

Coykendall, DK, Nizinski, MS, and Morrison, CL (2017). A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean. Deep-Sea Research – II. Topical Studies in Oceanography 137, 258–272.
A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Crandall, KA, and Fitzpatrick, JF (1996). Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45, 1–26.
Crayfish molecular systematics: using a combination of procedures to estimate phylogeny.Crossref | GoogleScholarGoogle Scholar |

Cubelio, SS, Tsuchida, S, Hendrickx, ME, Kado, R, and Watanabe, S (2007). A new species of vent associated Munidopsis (Crustacea: Decapoda: Anomura: Galatheidae) from the Western Pacific, with notes on its genetic identification. Zootaxa 1435, 25–36.
A new species of vent associated Munidopsis (Crustacea: Decapoda: Anomura: Galatheidae) from the Western Pacific, with notes on its genetic identification.Crossref | GoogleScholarGoogle Scholar |

Dellicour, S, and Flot, JF (2018). The hitchhiker’s guide to single‐locus species delimitation. Molecular Ecology Resources 18, 1234–1246.
The hitchhiker’s guide to single‐locus species delimitation.Crossref | GoogleScholarGoogle Scholar |

Dong, D, and Li, X (2021). Two new species of the genus Munidopsis Whiteaves, 1874 (Crustacea: Anomura: Munidopsidae) from the Caroline Ridge, South of the Mariana Trench. Journal of Oceanology and Limnology 39, 1841–1853.
Two new species of the genus Munidopsis Whiteaves, 1874 (Crustacea: Anomura: Munidopsidae) from the Caroline Ridge, South of the Mariana Trench.Crossref | GoogleScholarGoogle Scholar |

Dong, D, Xu, P, Li, XZ, and Wang, C (2019). Munidopsis species (Crustacea: Decapoda: Munidopsidae) from carcass falls in Weijia Guyot, West Pacific, with recognition of a new species based on integrative taxonomy. PeerJ 7, e8089.
Munidopsis species (Crustacea: Decapoda: Munidopsidae) from carcass falls in Weijia Guyot, West Pacific, with recognition of a new species based on integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Dong, D, Gan, Z, and Li, X (2021). Descriptions of eleven new species of squat lobsters (Crustacea: Anomura) from seamounts around the Yap and Mariana Trenches with notes on DNA barcodes and phylogeny. Zoological Journal of the Linnean Society 192, 306–355.
Descriptions of eleven new species of squat lobsters (Crustacea: Anomura) from seamounts around the Yap and Mariana Trenches with notes on DNA barcodes and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Drummond, AJ, and Rambaut, A (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Etter, RJ, Rex, MA, Chase, MR, and Quattro, JM (2005). Population differentiation decreases with depth in deep‐sea bivalves. Evolution 59, 1479–1491.
Population differentiation decreases with depth in deep‐sea bivalves.Crossref | GoogleScholarGoogle Scholar |

Etter, RJ, Boyle, EE, Glazier, A, Jennings, RM, Dutra, E, and Chase, MR (2011). Phylogeography of a pan‐Atlantic abyssal protobranch bivalve: implications for evolution in the deep Atlantic. Molecular Ecology 20, 829–843.
Phylogeography of a pan‐Atlantic abyssal protobranch bivalve: implications for evolution in the deep Atlantic.Crossref | GoogleScholarGoogle Scholar |

Faxon, W (1895). XV. The stalk-eyed Crustacea. In ‘Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U.S. Fish Commission Steamer “Albatross” during 1891, Lieut.-Commander Z.L. Tanner, U.S.N., commanding’. Memoirs of the Museum of Comparative Zoology at Harvard College 18, 1–230.

Folmer, O, Black, M, Hoeh, W, Lutz, R, and Vrijenhoek, R (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

Fujisawa, T, and Barraclough, TG (2013). Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Gaither, MR, Gkafas, GA, de Jong, M, Sarigol, F, Neat, F, Regnier, T, Moore, D, Grӧcke, DR, Hall, N, Liu, X, Kenny, J, Lucaci, A, Hughes, M, Haldenby, S, and Hoelzel, AR (2018). Genomics of habitat choice and adaptive evolution in a deep-sea fish. Nature Ecology & Evolution 2, 680–687.
Genomics of habitat choice and adaptive evolution in a deep-sea fish.Crossref | GoogleScholarGoogle Scholar |

García Raso, JE, García Muñoz, JE, and Manjón-Cabeza, ME (2008). First record of Munidopsis albatrossae (Crustacea: Decapoda: Galatheidae) from Antarctic waters. Polar Biology 31, 1281–1285.
First record of Munidopsis albatrossae (Crustacea: Decapoda: Galatheidae) from Antarctic waters.Crossref | GoogleScholarGoogle Scholar |

Goffredi, SK, Jones, WJ, Erhlich, H, Springer, A, and Vrijenhoek, RC (2008). Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environmental Microbiology 10, 2623–2634.
Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta.Crossref | GoogleScholarGoogle Scholar |

Guzman, GL, and Sellanes, J (2015). A review of the Munidopsidae Ortmann, 1898 (Decapoda, Galatheoidea) in Chilean waters, including new records for the Southeastern Pacific. Zootaxa 4021, 282–306.
A review of the Munidopsidae Ortmann, 1898 (Decapoda, Galatheoidea) in Chilean waters, including new records for the Southeastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Hansen HJ (1908) Crustacea Malacostraca. I. In ‘The Danish-Ingolf Expedition. Volume III’. (H. Hagerup: Copenhagen, Denmark)

Hatch, AS, Liew, H, Hourdez, S, and Rouse, GW (2020). Hungry scale worms: phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species. ZooKeys 932, 27–74.
Hungry scale worms: phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species.Crossref | GoogleScholarGoogle Scholar |

Henderson, JR (1885). XXXIX. – Diagnoses of the new species of Galatheidea collected during the ‘Challenger’ expedition. Annals and Magazine of Natural History 16, 407–421.
XXXIX. – Diagnoses of the new species of Galatheidea collected during the ‘Challenger’ expedition.Crossref | GoogleScholarGoogle Scholar |

Hendrickx, ME (2021). Squat lobsters (Crustacea: Decapoda: Anomura: Galatheoidea) from off the northwestern coast of the Baja California Peninsula, Mexico. Zootaxa 4965, 375–384.
Squat lobsters (Crustacea: Decapoda: Anomura: Galatheoidea) from off the northwestern coast of the Baja California Peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar |

Hendrickx, ME, and Ayón-Parente, M (2013). A new species of Munidopsis (Anomura, Galatheoidea, Munidopsidae) from the Gulf of California, Western Mexico. Crustaceana 86, 1304–1315.
A new species of Munidopsis (Anomura, Galatheoidea, Munidopsidae) from the Gulf of California, Western Mexico.Crossref | GoogleScholarGoogle Scholar |

Hendrickx, ME, Ayón-Parente, M, and Serrano, D (2011). Registro adicional de Janetogalathea californiensis (Anomura: Galatheidae) del Golfo de California central, México, con notas de su distribución. Hidrobiológica 21, 89–94.

Hudson, RR (1991). Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7, 1–44.

Huelsenbeck, JP, and Ronquist, F (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Hwang, H, Cho, B, Cho, J, Park, B, and Kim, T (2022). New record of hydrothermal vent squat lobster (Munidopsis lauensis) provides evidence of a dispersal corridor between the Pacific and Indian oceans. Journal of Marine Science and Engineering 10, 400.
New record of hydrothermal vent squat lobster (Munidopsis lauensis) provides evidence of a dispersal corridor between the Pacific and Indian oceans.Crossref | GoogleScholarGoogle Scholar |

Jones, WJ, and Macpherson, E (2007). Molecular phylogeny of the East Pacific squat lobsters of the genus Munidopsis (Decapoda: Galatheidae) with the descriptions of seven new species. Journal of Crustacean Biology 27, 477–501.
Molecular phylogeny of the East Pacific squat lobsters of the genus Munidopsis (Decapoda: Galatheidae) with the descriptions of seven new species.Crossref | GoogleScholarGoogle Scholar |

Kahle, D, and Wickham, H (2013). ggmap: spatial visualization with ggplot2. The R Journal 5, 144–161.
ggmap: spatial visualization with ggplot2.Crossref | GoogleScholarGoogle Scholar |

Katoh, K, Misawa, K, Kuma, K-i, and Miyata, T (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar |

Larsson, A (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278.
AliView: a fast and lightweight alignment viewer and editor for large datasets.Crossref | GoogleScholarGoogle Scholar |

Lessios, HA, and Robertson, DR (2006). Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proceedings of the Royal Society of London – B. Biological Sciences 273, 2201–2208.
Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier.Crossref | GoogleScholarGoogle Scholar |

Luke, SR (1977). Catalog of the benthic invertebrate collections of the Scripps Institution of Oceanography. I – Decapod Crustacea and Stomatopoda. Scripps Institution of Oceanography Reference Series 77-9, 1–72.

McClain, CR, and Hardy, SM (2010). The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society of London – B. Biological Sciences 277, 3533–3546.
The dynamics of biogeographic ranges in the deep sea.Crossref | GoogleScholarGoogle Scholar |

McCowin, MF, Feehery, C, and Rouse, GW (2020). Spanning the depths or depth-restricted: three new species of Bathymodiolus (Bivalvia, Mytilidae) and a new record for the hydrothermal vent Bathymodiolus thermophilus at methane seeps along the Costa Rica margin. Deep-Sea Research – I. Oceanographic Research Papers 164, 103322.
Spanning the depths or depth-restricted: three new species of Bathymodiolus (Bivalvia, Mytilidae) and a new record for the hydrothermal vent Bathymodiolus thermophilus at methane seeps along the Costa Rica margin.Crossref | GoogleScholarGoogle Scholar |

Machordom, A, and Macpherson, E (2004). Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence Molecular Phylogenetics and Evolution 33, 259–279.
Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidenceCrossref | GoogleScholarGoogle Scholar |

Macpherson, E (2007). Species of the genus Munidopsis Whiteaves, 1784 from the Indian and Pacific Oceans and reestablishment of the genus Galacantha A. Milne-Edwards, 1880 (Crustacea, Decapoda, Galatheidae). Zootaxa 1417, 1–135.
Species of the genus Munidopsis Whiteaves, 1784 from the Indian and Pacific Oceans and reestablishment of the genus Galacantha A. Milne-Edwards, 1880 (Crustacea, Decapoda, Galatheidae).Crossref | GoogleScholarGoogle Scholar |

Macpherson E, Baba K (2011) Chapter 2. Taxonomy of squat lobsters. In ‘The Biology of Squat Lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 39–71. (CSIRO Publishing: Melbourne, Vic., Australia)

Macpherson, E, and Segonzac, M (2005). Species of the genus Munidopsis (Crustacea, Decapoda, Galatheidae) from the deep Atlantic Ocean, including cold-seep and hydrothermal vent areas. Zootaxa. 1095, 1–60.
Species of the genus Munidopsis (Crustacea, Decapoda, Galatheidae) from the deep Atlantic Ocean, including cold-seep and hydrothermal vent areas.Crossref | GoogleScholarGoogle Scholar |

Macpherson, E, Richer de Forges, B, Schnabel, K, Samadi, S, Boisselier, MC, and Garcia-Rubies, A (2010). Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean. Deep-Sea Research – I. Oceanographic Research Papers 57, 228–238.
Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Macpherson, E, Beuck, L, and Freiwald, A (2016). Some species of Munidopsis from the Gulf of Mexico, Florida Straits and Caribbean Sea (Decapoda: Munidopsidae), with the description of two new species. Zootaxa 4137, 405–416.
Some species of Munidopsis from the Gulf of Mexico, Florida Straits and Caribbean Sea (Decapoda: Munidopsidae), with the description of two new species.Crossref | GoogleScholarGoogle Scholar |

Marin, I (2020). Northern unicorns of the depths: diversity of the genus Munidopsis Whiteaves, 1874 (Decapoda: Anomura: Munidopsidae) in the northwestern Pacific Ocean, with descriptions of three new species along the Russian coast. Progress in Oceanography 183, 102263.
Northern unicorns of the depths: diversity of the genus Munidopsis Whiteaves, 1874 (Decapoda: Anomura: Munidopsidae) in the northwestern Pacific Ocean, with descriptions of three new species along the Russian coast.Crossref | GoogleScholarGoogle Scholar |

Marlow, JJ, Anderson, RE, Reysenbach, AL, Seewald, JS, Shank, TM, Teske, AP, Wanless, VD, and Soule, SA (2022). New opportunities and untapped scientific potential in the abyssal ocean. Frontiers in Marine Science 8, 798943.
New opportunities and untapped scientific potential in the abyssal ocean.Crossref | GoogleScholarGoogle Scholar |

Miljutin, DM, Gad, G, Miljutina, MM, Mokievsky, VO, Fonseca-Genevois, V, and Esteves, AM (2010). The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 40, 143–159.
The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there?Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |

Miranda I, Peres PA, Tavares MDS, Mantelatto FL (2020) New molecular data on squat lobster from the coast of São Paulo State (Brazil) (Anomura: Munida and Agononida) and insights on the systematics of the family Munididae. In ‘Deep-Sea Pycnogonids and Crustaceans of the Americas’. (Ed. ME Hendrickx) pp. 343–356. (Springer: Cham, Switzerland)

O’Hara, TD, Williams, A, Ahyong, ST, Alderslade, P, Alvestad, T, Bray, D, Burghardt, I, Budaeva, N, Criscione, F, Crowther, AL, Ekins, M, Eléaume, M, Farrelly, CA, Finn, JK, Georgieva, MN, Graham, A, Gomon, M, Gowlett-Holmes, K, Gunton, LM, Hallan, A, Hosie, AM, Hutchings, P, Kise, H, Köhler, F, Konsgrud, JA, Kupriyanova, E, Lu, CC, Mackenzie, M, Mah, C, MacIntosh, H, Merrin, KL, Miskelly, A, Mitchell, ML, Moore, K, Murray, A, O’Loughlin, PM, Paxton, H, Pogonoski, JJ, Staples, D, Watson, JE, Wilson, RS, Zhang, J, and Bax, NJ (2020). The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records 13, 11.
The lower bathyal and abyssal seafloor fauna of eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Oliver, PG (2015). Deep-water Thyasiridae (Mollusca: Bivalvia) from the Oman Margin, Arabian Sea, new species and examples of endemism and cosmopolitanism. Zootaxa 3995, 252–263.
Deep-water Thyasiridae (Mollusca: Bivalvia) from the Oman Margin, Arabian Sea, new species and examples of endemism and cosmopolitanism.Crossref | GoogleScholarGoogle Scholar |

Palero F (2008) Genètica evolutiva en llagostes de l’infraordre Achelata. PhD thesis, Universitat de Barcelona, Barcelona, Spain.

Palero, F, Rodríguez-Flores, PC, Cabezas, P, Machordom, A, Macpherson, E, and Corbari, L (2019). Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae. Hydrobiologia 833, 173–184.
Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae.Crossref | GoogleScholarGoogle Scholar |

Palumbi S (1991) ‘Simple fool’s guide to PCR.’ (Department of Zoology and Kewalo Marine Laboratory, University of Hawaii: Hawaii, HI, USA)

Paradis, E (2010). pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420.
pegas: an R package for population genetics with an integrated–modular approach.Crossref | GoogleScholarGoogle Scholar |

Prada, C, and Hellberg, ME (2021). Speciation‐by‐depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation? Journal of Evolutionary Biology 34, 128–137.
Speciation‐by‐depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation?Crossref | GoogleScholarGoogle Scholar |

Puillandre, N, Lambert, A, Brouillet, S, and Achaz, G (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N, Brouillet, S, and Achaz, G (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609–620.
ASAP: assemble species by automatic partitioning.Crossref | GoogleScholarGoogle Scholar |

Rannala B, Yang Z (2020) Species delimitation. In ‘Phylogenetics in the Genomic Era’. (Eds C Scornavacca, F Delsuc, N Galtier) pp. 5.5:1–5.5:18. (Celine Scornavacca, Frédéric Delsuc and Nicolas Galtier) Available at https://hal.inria.fr/PGE/

Raupach, MJ, Malyutina, M, Brandt, A, and Wägele, JW (2007). Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep-Sea Research – II. Topical Studies in Oceanography 54, 1820–1830.
Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Reid, NM, and Carstens, BC (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model BMC Evolutionary Biology 12, 196.
Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent modelCrossref | GoogleScholarGoogle Scholar |

Rodríguez Flores PC (2021) Biodiversidad, biogeografía y patrones evolutivos en crustáceos (Anomura, Galatheoidea) de zonas tropicales y templadas. PhD thesis, Universitat de Barcelona, Barcelona, Spain.

Rodríguez-Flores, PC, Macpherson, E, and Machordom, A (2018). Three new species of squat lobsters of the genus Munidopsis Whiteaves, 1874, from Guadeloupe Island, Caribbean Sea (Crustacea, Decapoda, Munidopsidae). Zootaxa 4422, 569–580.
Three new species of squat lobsters of the genus Munidopsis Whiteaves, 1874, from Guadeloupe Island, Caribbean Sea (Crustacea, Decapoda, Munidopsidae).Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Machordom, A, Abelló, P, Cuesta, JA, and Macpherson, E (2019a). Species delimitation and multi-locus species tree solve an old taxonomic problem for European squat lobsters of the genus Munida Leach, 1820. Marine Biodiversity 49, 1751–1773.
Species delimitation and multi-locus species tree solve an old taxonomic problem for European squat lobsters of the genus Munida Leach, 1820.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, and Machordom, A (2019b). Revision of the squat lobsters of the genus Leiogalathea Baba, 1969 (Crustacea, Decapoda, Munidopsidae) with the description of 15 new species. Zootaxa 4560, 201–256.
Revision of the squat lobsters of the genus Leiogalathea Baba, 1969 (Crustacea, Decapoda, Munidopsidae) with the description of 15 new species.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, and Machordom, A (2021). Revision of the squat lobsters of the genus Phylladiorhynchus Baba, 1969 (Crustacea, Decapoda, Galatheidae) with the description of 41 new species. Zootaxa 5008, 1–159.
Revision of the squat lobsters of the genus Phylladiorhynchus Baba, 1969 (Crustacea, Decapoda, Galatheidae) with the description of 41 new species.Crossref | GoogleScholarGoogle Scholar |

Rodríguez‐Flores, PC, Buckley, D, Macpherson, E, Corbari, L, and Machordom, A (2020). Deep‐sea squat lobster biogeography (Munidopsidae: Leiogalathea ) unveils Tethyan vicariance and evolutionary patterns shared by shallow‐water relatives Zoologica Scripta 49, 340–356.
Deep‐sea squat lobster biogeography (Munidopsidae: Leiogalathea ) unveils Tethyan vicariance and evolutionary patterns shared by shallow‐water relativesCrossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, and Machordom, A (2022a). New species of deep-sea squat lobsters (Decapoda: Anomura: Galatheoidea) from Guadeloupe, French West Indies, unveiled through integrative taxonomy. Journal of Crustacean Biology 42, ruab070.
New species of deep-sea squat lobsters (Decapoda: Anomura: Galatheoidea) from Guadeloupe, French West Indies, unveiled through integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, Schnabel, K, Ahyong, ST, Corbari, L, and Machordom, A (2022b). Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus). Molecular Phylogenetics and Evolution 171, 107467.
Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus).Crossref | GoogleScholarGoogle Scholar |

Roterman, CN, Lee, WK, Liu, X, Lin, R, Li, X, and Won, YJ (2018). A new yeti crab phylogeny: vent origins with indications of regional extinction in the East Pacific. PloS ONE 13, e0194696.
A new yeti crab phylogeny: vent origins with indications of regional extinction in the East Pacific.Crossref | GoogleScholarGoogle Scholar |

Salinas-de-León, P, Martí-Puig, P, Buglass, S, Arnés-Urgellés, C, Rastoin-Laplane, E, Creemers, M, Cairns, S, Fisher, C, O’Hara, T, Ott, B, Raineault, NA, Reiswig, H, Rouse, G, Rowley, S, Shank, TM, Suarez, J, Watling, L, Wicksten, MK, and Marsh, L (2020). Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands. Scientific Reports 10, 13894.
Characterization of deep-sea benthic invertebrate megafauna of the Galapagos Islands.Crossref | GoogleScholarGoogle Scholar |

Schmitt, WL (1921). The marine decapod Crustacea of California with special reference to the decapod Crustacea collected by the United States Bureau of Fisheries Steamer Albatross in connection with the biological survey of San Francisco Bay during the years 1912–1913. University of California Publications in Zoology 23, 1–470.

Schnabel KE, Cabezas P, McCallum A, Macpherson E, Ahyong ST, Baba K, Poore GCB (2011a) Worldwide distribution patterns of squat lobsters. In ‘The Biology of Squat Lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 149–182. (CSIRO Publishing: Melbourne, Vic., Australia)

Schnabel, KE, Ahyong, ST, and Maas, EW (2011b). Galatheoidea are not monophyletic – molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily. Molecular Phylogenetics and Evolution 58, 157–168.
Galatheoidea are not monophyletic – molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.Crossref | GoogleScholarGoogle Scholar |

Schornikov, EI (2005). The question of cosmopolitanism in the deep-sea ostracod fauna: the example of the genus Pedicythere. Hydrobiologia 538, 193–215.
The question of cosmopolitanism in the deep-sea ostracod fauna: the example of the genus Pedicythere.Crossref | GoogleScholarGoogle Scholar |

Smith, SI (1885). On some new or little known decapod Crustacea, from recent Fish Commission dredgings off the east coast of the United States. Proceedings of the United States National Museum 7, 493–511.
On some new or little known decapod Crustacea, from recent Fish Commission dredgings off the east coast of the United States.Crossref | GoogleScholarGoogle Scholar |

South, A, and South, MA (2016). Package ‘rworldmap’. Mapping global data. The R Journal 3, 35–43.

Sukumaran, J, and Knowles, LL (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences 114, 1607–1612.
Multispecies coalescent delimits structure, not species.Crossref | GoogleScholarGoogle Scholar |

Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. (Sinauer Associates: Sunderland, MA, USA) Available at https://paup.phylosolutions.com/

Tan, MH, Gan, HM, Lee, YP, Linton, S, Grandjean, F, Bartholomei-Santos, ML, Miller, AD, and Austin, CM (2018). ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution 127, 320–331.
ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements.Crossref | GoogleScholarGoogle Scholar |

Thomas, EA, Liu, R, Amon, D, Copley, JT, Glover, AG, Helyar, SJ, Olu, K, Wiklund, H, Zhang, H, and Sigwart, JD (2020). Chiridota heheva – the cosmopolitan holothurian. Marine Biodiversity 50, 110.
Chiridota heheva – the cosmopolitan holothurian.Crossref | GoogleScholarGoogle Scholar |

Tilesius, G (1815). De cancris Camtschaticis, oniscis, entomostracis et cancellis marinis microscopicis noctilucentibus, Cum tabulis IV. Aeneis et appendice adnexo de acaris et ricinis Camtschaticis. Mémoires de l’Académie Impériale des Sciences de St Pétersbourg 5, 331–405.

Trifinopoulos, J, Nguyen, LT, von Haeseler, A, and Minh, BQ (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar |

Van Dover, CL, Factor, JR, Williams, AB, and Berg, CJ (1985). Reproductive patterns of decapod crustaceans from hydrothermal vents. Bulletin of the Biological Society of Washington 6, 223–227.

Wenner, EL (1982). Notes on the distribution and biology of Galatheidae and Chirostylidae (Decapoda: Anomura) from the Middle Atlantic Bight. Journal of Crustacean Biology 2, 360–377.
Notes on the distribution and biology of Galatheidae and Chirostylidae (Decapoda: Anomura) from the Middle Atlantic Bight.Crossref | GoogleScholarGoogle Scholar |

Whitfield, JB, and Lockhart, PJ (2007). Deciphering ancient rapid radiations. Trends in Ecology & Evolution 22, 258–265.
Deciphering ancient rapid radiations.Crossref | GoogleScholarGoogle Scholar |

Wicksten, MK (2012). Decapod Crustacea of the Californian and Oregonian zoogeographic provinces. Zootaxa 3371, 1–307.

Williams, AB, and Baba, K (1989). New squat lobsters (Galatheidae) from the Pacific Ocean: Mariana Back Arc Basin, East Pacific Rise, and Cascadia Basin. Fishery Bulletin 87, 899–910.

Williams, AB, and Van Dover, CL (1983). A new species of Munidopsis from submarine thermal vents of the east Pacific Rise at 21°N (Anomura: Galatheidae). Proceedings of the Biological Society of Washington 96, 481–488.

Yule, GU (1925). II. – A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F. R. S. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 213, 21–87.
II. – A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F. R. S.Crossref | GoogleScholarGoogle Scholar |

Zardus, JD, Etter, RJ, Chase, MR, Rex, MA, and Boyle, EE (2006). Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Molecular Ecology 15, 639–651.
Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939).Crossref | GoogleScholarGoogle Scholar |

Zeppilli, D, Vanreusel, A, and Danovaro, R (2011). Cosmopolitanism and biogeography of the genus Manganonema (Nematoda: Monhysterida) in the deep sea. Animals 1, 291–305.
Cosmopolitanism and biogeography of the genus Manganonema (Nematoda: Monhysterida) in the deep sea.Crossref | GoogleScholarGoogle Scholar |

Zhang, J, Kapli, P, Pavlidis, P, and Stamatakis, A (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar |