Faustino L. A.1927‘Recent Madreporaria of the Philippine Islands.’ (Bureau Printing: Manila, Philippines.)
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia)

Yuta Mitsuki A , Naoko Isomura B , Yoko Nozawa C , Hiroyuki Tachikawa D , Danwei Huang E and Hironobu Fukami https://orcid.org/0000-0002-7647-6668 F G
+ Author Affiliations
- Author Affiliations

A Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.

B Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-city, Okinawa 905-2192, Japan.

C Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.

D Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba, 299-5242, Japan.

E Department of Biological Sciences, Tropical Marine Science Institute and Centre for Nature-based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.

F Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.

G Corresponding author. Email: hirofukami@cc.miyazaki-u.ac.jp

Invertebrate Systematics 35(8) 876-891 https://doi.org/10.1071/IS21025
Submitted: 2 April 2021  Accepted: 22 June 2021   Published: 5 November 2021

Abstract

Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.


References

Anthony, K. R. N. (2016). Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy. Annual Review of Environment and Resources 41, 59–81.
Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy.Crossref | GoogleScholarGoogle Scholar |

Arrigoni, R., Berumen, M. L., Chen, C. A., Terraneo, T. I., Baird, A. H., Payri, C., and Benzoni, F. (2016). Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution 105, 146–159.
Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species.Crossref | GoogleScholarGoogle Scholar | 27593164PubMed |

Arrigoni, R., Maggioni, D., Montano, S., Hoeksema, B. W., Seveso, D., Shlesinger, T., Terraneo, T. I., Tietbohl, M. D., and Berumen, M. L. (2018). An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs 37, 967–984.
An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Arrigoni, R., Berumen, M. L., Stolarski, J., Terraneo, T. I., and Benzoni, F. (2019). Uncovering hidden coral diversity: a new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics 35, 301–328.
Uncovering hidden coral diversity: a new cryptic lobophylliid scleractinian from the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 34633682PubMed |

Chen, C. A., Chang, C. C., Wei, N. V., Chen, C. H., Lein, Y. T., Lin, H. E., Dai, C. C., and Wallace, C. C. (2004). Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zoological Studies 43, 759–771.

Crossland, C. (1952). Madreporaria, Hydrocorallinae, Heliopora and Tubipora. Scientific Report of the Great Barrier Reef Expedition 1928–29 6, 85–257.

Duncan, P. M. (1886). On the Madreporaria of the Mergui Archipelago collected for the Trustees of the Indian Museum, Calcutta by Dr John Anderson, F.R.S., Superintendent of the Museum. Zoological Journal of the Linnean Society 21, 1–25.
On the Madreporaria of the Mergui Archipelago collected for the Trustees of the Indian Museum, Calcutta by Dr John Anderson, F.R.S., Superintendent of the Museum.Crossref | GoogleScholarGoogle Scholar |

Faustino  L. A.1927 ‘Recent Madreporaria of the Philippine Islands.’ (Bureau Printing: Manila, Philippines.)

Fukami, H., Budd, A. F., Levitan, D. R., Jara, J., Kersanach, R., and Knowlton, N. (2004). Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58, 324–337.
Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers.Crossref | GoogleScholarGoogle Scholar | 15068349PubMed |

Goodkin, N. F., Switzer, A. D., McCorry, D., DeVantier, L., True, J. D., Hughen, K. A., Angeline, N., and Yang, T. T. (2011). Coral communities of Hong Kong: long-lived corals in a marginal reef environment. Marine Ecology Progress Series 426, 185–196.
Coral communities of Hong Kong: long-lived corals in a marginal reef environment.Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Huang, D., Licuanan, W. Y., Baird, A. H., and Fukami, H. (2011). Cleaning up the ‘Bigmessidae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evolutionary Biology 11, 37.
Cleaning up the ‘Bigmessidae’: Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae.Crossref | GoogleScholarGoogle Scholar | 21299898PubMed |

Huang, D., Benzoni, F., Fukami, H., Knowlton, N., Smith, N. D., and Budd, A. F. (2014a). Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 171, 277–355.
Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Huang, D., Benzoni, F., Arrigoni, R., Baird, A. H., Berumen, M. L., Bouwmeester, J., Chou, L. M., Fukami, H., Licuanan, W. Y., Lovell, E. R., and Meier, R. (2014b). Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zoologica Scripta 43, 531–548.
Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae).Crossref | GoogleScholarGoogle Scholar |

Huang, D., Arrigoni, R., Benzoni, F., Fukami, H., Knowlton, N., Smith, N. D., Stolarski, J., Chou, L. M., and Budd, A. F. (2016). Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 178, 436–481.
Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia).Crossref | GoogleScholarGoogle Scholar |

Isomura, N., Iwao, K., and Fukami, H. (2013). Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS One 8, e56701.
Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates.Crossref | GoogleScholarGoogle Scholar | 23457605PubMed |

Keshavmurthy, S., Yang, S. Y., Alamaru, A., Chuang, Y. Y., Pichon, M., Obura, D., Fontana, S., De Palmas, S., Stefani, F., Benzoni, F., MacDnald, A., Noreen, A. M. E., Chen, C., Wallace, C. C., Pillay, R. M., Denis, V., Amri, A. Y., Rimer, J. D., Mezaki, T., Sheppard, C., Loya, Y., Abelson, A., Suleiman, M. M., Baker, A. C., Mostafavi, P. G., Suharsono, B. A., and Chen, C. A. (2013). DNA barcoding reveals the coral ‘laboratory-rat’, Stylophora pistillata encompasses multiple identities. Scientific Reports 3, 1520.
DNA barcoding reveals the coral ‘laboratory-rat’, Stylophora pistillata encompasses multiple identities.Crossref | GoogleScholarGoogle Scholar | 23519209PubMed |

Kitahara, M. V., Fukami, H., Benzoni, F., and Huang, D. (2016). The new systematics of Scleractinia: integrating molecular and morphological evidence. In ‘The Cnidaria, Past, Present and Future: the World of Medusa and her Sisters’. (Eds S. Goffredo and Z. Dubinsky.) pp. 41–59 (Springer: Dordrecht, Netherlands.)

Kongjandtre, N., Ridgway, T., Cook, L. G., Huelsken, T., Budd, A. F., and Hoegh-Guldberg, O. (2012). Taxonomy and species boundaries in the coral genus Favia Milne Edwards and Haime, 1857 (Cnidaria: Scleractinia) from Thailand revealed by morphological and genetic data. Coral Reefs 31, 581–601.
Taxonomy and species boundaries in the coral genus Favia Milne Edwards and Haime, 1857 (Cnidaria: Scleractinia) from Thailand revealed by morphological and genetic data.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar | 29722887PubMed |

Ladner, J. T., and Palumbi, S. R. (2012). Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Molecular Ecology 21, 2224–2238.
Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes.Crossref | GoogleScholarGoogle Scholar | 22439812PubMed |

Luzon, K. S., Alcantara, D. T., and Licuanan, W. Y. (2021). Nemenzo Virtual Museum: Goniastrea equisepta. (Coenomap.) Available at http://www.coenomap.org/fact-sheet/goniastrea-equisepta/ [Verified 24 June 2021].

Matthai, G. (1924). Report of the madreporarian corals in the collection of the Indian Museum, Calcutta. Memoirs of the Indian Museum 8, 1–59.

Mellin, C., Peterson, E. E., Puotinen, M., and Schaffelke, B. (2020). Representation and complementarity of the long‐term coral monitoring on the Great Barrier Reef. Ecological Applications 30, e02122.
Representation and complementarity of the long‐term coral monitoring on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 32159898PubMed |

Mezaki, T. (2016). Coral spawning, from the viewpoint of field research in Japan. Biological Science 67, 228–241.

Mezaki, T., Hayashi, T., Iwase, F., Nakachi, S., Nozawa, Y., Miyamoto, M., and Tominaga, M. (2007). Spawning patterns of high latitude scleractinian corals from 2002 to 2006 at Nishidomari, Otsuki, Kochi, Japan. Kuroshio Biosphere 3, 33–47.

Nakabayashi, A., Yamakita, T., Nakamura, T., Aizawa, H., Kitano, Y. F., Iguchi, A., Yamano, H., Nagai, S., Agostini, S., Teshima, K. M., and Yasuda, N. (2019). The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Scientific Reports 9, 1892.
The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change.Crossref | GoogleScholarGoogle Scholar | 30760801PubMed |

Nemenzo, F. (1959). Systematic studies on Philippine shallow water scleractinians: II. Suborder Faviida. Natural and Applied Science Bulletin 16, 73–135.

Nishihira, M., and Veron, J. E. N. (1995). ‘Hermatypic corals of Japan.’ (Kaiyusha Publisher: Tokyo, Japan.) [In Japanese].

Nozawa, Y., and Harrison, P. L. (2005). Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan. Coral Reefs 24, 274–282.
Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan.Crossref | GoogleScholarGoogle Scholar |

Pipithkul, S., Ishizu, S., Shimura, A., Yokochi, H., Nagai, S., Fukami, H., and Yasuda, N. (2021). High clonality and geographically separated cryptic lineages in the threatened temperate coral, Acropora pruinosa. Frontiers in Marine Science 8, 668043.
High clonality and geographically separated cryptic lineages in the threatened temperate coral, Acropora pruinosa.Crossref | GoogleScholarGoogle Scholar |

Rosser, N. L., Thomas, L., Stankowski, S., Richards, Z. T., Kennington, W. J., and Johnson, M. S. (2017). Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20162182.
Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora.Crossref | GoogleScholarGoogle Scholar |

Sakai, K. (1997). Gametogenesis, spawning, and planula brooding by the reef coral Goniastrea aspera (Scleractinia) in Okinawa, Japan. Marine Ecology Progress Series 151, 67–72.
Gametogenesis, spawning, and planula brooding by the reef coral Goniastrea aspera (Scleractinia) in Okinawa, Japan.Crossref | GoogleScholarGoogle Scholar |

Suzuki, G., Keshavmurthy, S., Hayashibara, T., Wallace, C. C., Shirayama, Y., Chen, C. A., and Fukami, H. (2016). Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35, 1419–1432.
Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex.Crossref | GoogleScholarGoogle Scholar |

Terraneo, T. I., Benzoni, F., Baird, A. H., Arrigoni, R., and Berumen, M. L. (2019). Morphology and molecules reveal two new species of Porites (Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. Systematics and Biodiversity 17, 491–508.
Morphology and molecules reveal two new species of Porites (Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden.Crossref | GoogleScholarGoogle Scholar |

van Woesik, R., and Jordán-Garza, A. G. (2011). Coral populations in a rapidly changing environment. Journal of Experimental Marine Biology and Ecology 408, 11–20.
Coral populations in a rapidly changing environment.Crossref | GoogleScholarGoogle Scholar |

Veron, J. E. N. (2000). ‘Corals of the World. Volumes 1–3.’ (Australian Institute of Marine Science: Townsville, Qld, Australia.)

Veron, J. E. N., and Minchin, P. R. (1992). Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Continental Shelf Research 12, 835–857.
Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan.Crossref | GoogleScholarGoogle Scholar |

Veron, J. E. N., Pichon, M., and Wijsman-Best, M. (1977). ‘Scleractinia of Eastern Australia. Part II. Families Faviidae, Trachyphylliidae.’ (Australian Institute of Marine Science: Townsville. Qld, Australia.)

Verrill, A. E. (1866). Synopsis of the polyps and corals of the North Pacific exploring expedition, under commodore C. Ringgold and captain John Rodgers, U.S.N., from 1853 to 1856. Collected by Dr W. Stimpson, naturalist to the expedition. With descriptions of some additional species from the west coast of North America. Part III. Madreporaria. Communications of the Essex Institute 5, 17–50.

Wallace, C. C. (1985). Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora. Marine Biology 88, 217–233.
Reproduction, recruitment and fragmentation in nine sympatric species of the coral genus Acropora.Crossref | GoogleScholarGoogle Scholar |

Wallace, C. C., Chen, C. A., Fukami, H., and Muir, P. R. (2007). Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs 26, 231–239.
Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae).Crossref | GoogleScholarGoogle Scholar |

Wei, N. W. V., Wallace, C. C., Dai, C. F., Pillay, K. M., and Chen, C. A. (2006). Analyses of the ribosomal internal transcribed Spacers (ITS) and 58S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zoological Studies 45, 404–418.

Yabe, H., Sugiyama, T., and Eguchi, M. (1936). Recent reef-building corals from Japan and the South Sea Islands under the Japanese mandate. I. The Science Reports of the Tôhoku Imperial University, Sendai, 2nd Series (Geologie) 1, 1–66.

Yamano, H., Hori, K., Yamauchi, M., Yamagawa, O., and Ohmura, A. (2001). Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20, 9–12.
Highest-latitude coral reef at Iki Island, Japan.Crossref | GoogleScholarGoogle Scholar |