Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Snails in depth: integrative taxonomy of Famelica, Glaciotomella and Rimosodaphnella (Conoidea: Raphitomidae) from the deep sea of temperate Australia

Francesco Criscione https://orcid.org/0000-0002-1996-2854 A D , Anders Hallan https://orcid.org/0000-0003-4858-7042 A , Nicolas Puillandre B and Alexander Fedosov C
+ Author Affiliations
- Author Affiliations

A Australian Museum Research Institute, 1 William Street, Sydney, NSW 2010, Australia.

B Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles. 57 rue Cuvier, CP 26, F-75005 Paris, France.

C A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninski Prospect 33, RU-119071 Moscow, Russia.

D Corresponding author. Email: francesco.criscione@austmus.gov.au

Invertebrate Systematics 35(8) 940-962 https://doi.org/10.1071/IS21008
Submitted: 9 February 2021  Accepted: 28 June 2021   Published: 5 November 2021

Abstract

The deep sea of temperate south-eastern Australia appears to be a ‘hotspot’ for diversity and endemism of conoidean neogastropods of the family Raphitomidae. Following a series of expeditions in the region, a considerable amount of relevant DNA-suitable material has become available. A molecular phylogeny based on this material has facilitated the identification of diagnostic morphological characters, allowing the circumscription of monophyletic genera and the introduction of several new genus-level taxa. Both named and new genera are presently being investigated through integrative taxonomy, with the discovery of a significant number of undescribed species. As part of this ongoing investigation, our study focuses on the genera Famelica Bouchet & Warén, 1980, Glaciotomella Criscione, Hallan, Fedosov & Puillandre, 2020 and Rimosodaphnella Cossmann, 1914. We subjected a comprehensive mitochondrial DNA dataset of representative deep-sea raphitomids to the species delimitation methods ABGD and ASAP that recognised 18 and 15 primary species hypotheses (PSHs) respectively. Following additional evaluation of shell and radular features, and examination of geographic and bathymetric ranges, nine of these PSHs were converted to secondary species hypotheses (SSHs). Four SSHs (two in Famelica and two in Rimosodaphnella) were recognised as new, and formal descriptions are provided herein.

Keywords: shell, radula, deep sea, mtDNA, species delimitation, biodiversity


References

Barnard, K. H. (1963). Deep sea Mollusca from West of Cape Point, South Africa. Annals of the South African Museum 46, 407–453.

Bonfitto, A., and Morassi, M. (2013). New Indo-Pacific species of Rimosodaphnella Cossmann, 1916 (Gastropoda: Conoidea): a genus of probable Tethyan origin. Molluscan Research 33, 230–236.
New Indo-Pacific species of Rimosodaphnella Cossmann, 1916 (Gastropoda: Conoidea): a genus of probable Tethyan origin.Crossref | GoogleScholarGoogle Scholar |

Bouchet, P. (1990). Turrid genera and mode of development: the use and abuse of protoconch morphology. Malacologia 32, 69–77.

Bouchet, P., and Kantor, Y. I. (2004). New Caledonia: The major centre of biodiversity for volutomitrid molluscs (Mollusca: Neogastropoda: Volutomitridae). Systematics and Biodiversity 1, 467–502.
New Caledonia: The major centre of biodiversity for volutomitrid molluscs (Mollusca: Neogastropoda: Volutomitridae).Crossref | GoogleScholarGoogle Scholar |

Bouchet, P., and Sysoev, A. V. (1997). Revision of the Recent species of Buccinaria (Gastropoda: Conoidea), a genus of deep-water turrids of Tethyan origin. Venus (Tokyo) 56, 93–119.

Bouchet, P., and Sysoev, A. V. (2001). Typhlosyrinx-like tropical deep-water turriform gastropods (Mollusca, Gastropoda, Conoidea). Journal of Natural History 35, 1693–1715.
Typhlosyrinx-like tropical deep-water turriform gastropods (Mollusca, Gastropoda, Conoidea).Crossref | GoogleScholarGoogle Scholar |

Bouchet, P., and Warén, A. (1980). Revision of the north east Atlantic bathyal and abyssal Turridae (Mollusca, Gastropoda). The Journal of Molluscan Studies 46, 1–119.
Revision of the north east Atlantic bathyal and abyssal Turridae (Mollusca, Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Bouchet, P., Heros, V., Lozouet, P., and Maestrati, P. (2008) A quarter-century of deep-sea malacological exploration in the South and West Pacific: where do we stand? How far to go? In ‘Tropical Deep-Sea Benthos’. (Eds V. Héros, R. H. Cowie, and P. Bouchet) pp. 9–40. (Muséum national d’Histoire naturelle.)

Bouchet, P., Lozouet, P., and Sysoev, A. V. (2009). An inordinate fondness for turrids. Deep-sea Research – II. Topical Studies in Oceanography 56, 1724–1731.
An inordinate fondness for turrids.Crossref | GoogleScholarGoogle Scholar |

Bouchet, P., Kantor, Y. I., Sysoev, A. V., and Puillandre, N. (2011). A new operational classification of the Conoidea (Gastropoda). The Journal of Molluscan Studies 77, 273–308.
A new operational classification of the Conoidea (Gastropoda).Crossref | GoogleScholarGoogle Scholar |

Brocchi, G. (1814) ‘Conchiologia fossile subapennina, con osservazioni geologiche sugli Apennini e sul suolo adiacente.’ (Stamperia reale: Milan, Italy.)

Castelin, M., Puillandre, N., Kantor, Y., Modica, M. V., Terryn, Y., Cruaud, C., Bouchet, P., and Holford, M. (2012). Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae). Molecular Phylogenetics and Evolution 64, 21–44.
Macroevolution of venom apparatus innovations in auger snails (Gastropoda; Conoidea; Terebridae).Crossref | GoogleScholarGoogle Scholar | 22440724PubMed |

Cossmann, M. (1916). ‘Essais de paléoconchologie comparée.’ (Chez l’auteur, [a la Société d’éditions et autres]: Paris, France.)

Costello, M. J., Tsai, P., Wong, P. S., Cheung, A. K. L., Basher, Z., and Chaudhary, C. (2017). Marine biogeographic realms and species endemicity. Nature Communications 8, 1057.
Marine biogeographic realms and species endemicity.Crossref | GoogleScholarGoogle Scholar | 29051522PubMed |

Criscione, F., Hallan, A., Puillandre, N., and Fedosov, A. (2021). Where the snails have no name: a molecular phylogeny of Raphitomidae (Neogastropoda: Conoidea) uncovers vast unexplored diversity in the deep seas of temperate southern and eastern Australia. Zoological Journal of the Linnean Society 191, 961–1000.
Where the snails have no name: a molecular phylogeny of Raphitomidae (Neogastropoda: Conoidea) uncovers vast unexplored diversity in the deep seas of temperate southern and eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Criscione, F., Hallan, A., Fedosov, A., and Puillandre, N. (2021). Deep Downunder: integrative taxonomy of Austrobela, Spergo, Theta and Austrotheta (Conoidea: Raphitomidae) from the deep sea of Australia. Journal of Zoological Systematics and Evolutionary Research. , .
Deep Downunder: integrative taxonomy of Austrobela, Spergo, Theta and Austrotheta (Conoidea: Raphitomidae) from the deep sea of Australia.Crossref | GoogleScholarGoogle Scholar |

Dall, W. H. (1881). Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Gulf of Mexico and in the Caribbean Sea (1877–78), by the United States Coast Survey Steamer “Blake”, Lieutenant-Commander C.D. Sigsbee, U.S.N., and Commander J.R. Bartlett, U.S.N., commanding. XV. Preliminary report on the Mollusca. Bulletin of the Museum of Comparative Zoology at Harvard College 9, 33–144.

Dall, W. H. (1889). Reports on the results of dredgings, under the supervision of Alexander Agassiz, in the Gulf of Mexico (1877–78) and in the Caribbean Sea (1879–80), by the U. S. Coast Survey Steamer ‘Blake’. XXIX-Report on the Mollusca. Part II. Gastropoda and Scaphopoda. Bulletin of the Museum of Comparative Zoology at Harvard College 18, 1–492.

Dautzenberg, P., and Fischer, H. (1896). Campagnes scientifiques de S. A. le Prince Albert ler de Monaco. Dragages effectues par l’Hirondelle et par la Princesse Alice, 1888–1895... I-Mollusques, Gasteropodes including Polyplacophora. Mémoires de la Société Zoologique de France ix, 395–498.

Dautzenberg, P., and Fischer, H. (1897). Campagnes scientifiques de S. A. le Prince Albert Ier de Monaco. Dragages effectues par l’Hirondelle et par la Princesse-Alice, 1888–1896. Mémoires de la Société Zoologique de France x, 139–234.

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Fassio, G., Russini, V., Pusateri, F., Giannuzzi-Savelli, R., Høisæter, T., Puillandre, N., Modica, M. V., and Oliverio, M. (2019). An assessment of Raphitoma and allied genera (Neogastropoda: Raphitomidae). The Journal of Molluscan Studies 85, 413–424.
An assessment of Raphitoma and allied genera (Neogastropoda: Raphitomidae).Crossref | GoogleScholarGoogle Scholar |

Fedosov, A. E. (2007). Anatomy of accessory rhynchodeal organs of Veprecula vepratica and Tritonoturris subrissoides: new types of foregut morphology in Raphitominae (Conoidea). Ruthenica : Rossiiskii Malakologicheskii Zhurnal = Russian Malacological Journal 17, 33–41.

Figueira, R. M. A., and Absalão, R. S. (2012). Deep-water Raphitomidae (Mollusca, Gastropoda, Conoidea) from the Campos Basin, southeast Brazil. Zootaxa 3527, 1–27.
Deep-water Raphitomidae (Mollusca, Gastropoda, Conoidea) from the Campos Basin, southeast Brazil.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Hallan, A., Criscione, F., Fedosov, A., and Puillandre, N. (2021). Few and far apart: integrative taxonomy of Australian species of Gladiobela and Pagodibela (Conoidea: Raphitomidae) reveals patterns of wide distributions and low abundance. Invertebrate Systematics 35, 181–202.

Harasewych, M., and Kantor, Y. (2004). The deep-sea Buccinoidea (Gastropoda: Neogastropoda) of the Scotia Sea and adjacent abyssal plains and trenches. The Nautilus 118, 1–42.

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Kantor, Y. I., and Sysoev, A. V. (1989). The morphology of toxoglossan gastropods lacking a radula, with a description of new species and genus of Turridae. The Journal of Molluscan Studies 55, 537–549.
The morphology of toxoglossan gastropods lacking a radula, with a description of new species and genus of Turridae.Crossref | GoogleScholarGoogle Scholar |

Kantor, Y. I., and Taylor, J. D. (2002). Foregut anatomy and relationships of raphitomine gastropods (Gastropoda: Conoidea: Raphitominae). Bollettino Malacologico 38, 83–110.

Kantor, Y. I., Puillandre, N., Olivera, B. M., and Bouchet, P. (2008). Morphological proxies for taxonomic decision in turrids (Mollusca, Neogastropoda): a test of the value of shell and radula characters using molecular data. Zoological Science 25, 1156–1170.
Morphological proxies for taxonomic decision in turrids (Mollusca, Neogastropoda): a test of the value of shell and radula characters using molecular data.Crossref | GoogleScholarGoogle Scholar | 19267627PubMed |

Kantor, Y. I., Strong, E. E., and Puillandre, N. (2012). A new lineage of Conoidea (Gastropoda: Neogastropoda) revealed by morphological and molecular data. The Journal of Molluscan Studies 78, 246–255.
A new lineage of Conoidea (Gastropoda: Neogastropoda) revealed by morphological and molecular data.Crossref | GoogleScholarGoogle Scholar |

Kantor, Y. I., Harasewych, M. G., and Puillandre, N. (2016). A critical review of Antarctic Conoidea (Neogastropoda). Molluscan Research 36, 153–206.
A critical review of Antarctic Conoidea (Neogastropoda).Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 7463489PubMed |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Levinton, J. S. (1982). The body size-prey size hypothesis: the adequacy of body size as a vehicle for character displacement. Ecology 63, 869–872.
The body size-prey size hypothesis: the adequacy of body size as a vehicle for character displacement.Crossref | GoogleScholarGoogle Scholar |

Levinton, J. S. (1987). The body size-prey size hypothesis and hydrobia. Ecology 68, 229–231.
The body size-prey size hypothesis and hydrobia.Crossref | GoogleScholarGoogle Scholar |

MacIntosh, H., Althaus, F., Williams, A., Tanner, J. E., Alderslade, P., Ahyong, S. T., Bax, N., Criscione, F., Crowther, A. L., Farrelly, C. A., Finn, J. K., Goudie, L., Gowlett-Holmes, K., Hosie, A. M., Kupriyanova, E., Mah, C., McCallum, A. W., Merrin, K. L., Miskelly, A., Mitchell, M. L., Molodtsova, T., Murray, A., O’Hara, T. D., O’Loughlin, P. M., Paxton, H., Reid, A. L., Sorokin, S. J., Staples, D., Walker-Smith, G., Whitfield, E., and Wilson, R. S. (2018). Invertebrate diversity in the deep Great Australian Bight (200–5000 m). Marine Biodiversity Records 11, 23.
Invertebrate diversity in the deep Great Australian Bight (200–5000 m).Crossref | GoogleScholarGoogle Scholar |

McClain, C., and Rex, M. (2001). The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression. Marine Biology 139, 681–685.
The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression.Crossref | GoogleScholarGoogle Scholar |

McClain, C., Rex, M., and Jabbour, R. (2005). Deconstructing bathymetric patterns of body size in deep-sea gastropods. Marine Ecology Progress Series 297, 181–187.
Deconstructing bathymetric patterns of body size in deep-sea gastropods.Crossref | GoogleScholarGoogle Scholar |

McLean, J. H., and Poorman, L. H. (1971). New species of tropical Eastern Pacific Turridae. The Veliger 14, 89–113.

Miller, B. A. (1975). The biology of Terebra gouldi Deshayes, 1859, and a discussion of life history similarities among other terebrids of similar proboscis type. Pacific Science 29, 227–241.

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., and Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar | 32011700PubMed |

Morassi, M., and Bonfitto, A. (2006). Cryptodaphne kilburni, a new species of bathyal turrid (Gastropoda: Prosobranchia) from the Gulf of Aden (Northwestern Indian Ocean). The Veliger 48, 230–233.

Morassi, M., and Bonfitto, A. (2015). New Indo-Pacific species of the genus Teretia Norman, 1888 (Gastropoda: Raphitomidae). Zootaxa 3911, 560–570.
New Indo-Pacific species of the genus Teretia Norman, 1888 (Gastropoda: Raphitomidae).Crossref | GoogleScholarGoogle Scholar | 25661630PubMed |

O’Hara, T. D., Williams, A., Ahyong, S. T., Alderslade, P., Alvestad, T., Bray, D., Burghardt, I., Budaeva, N., Criscione, F., Crowther, A. L., Ekins, M., Eléaume, M., Farrelly, C. A., Finn, J. K., Georgieva, M. N., Graham, A., Gomon, M., Gowlett-Holmes, K., Gunton, L. M., Hallan, A., Hosie, A. M., Hutchings, P., Kise, H., Köhler, F., Konsgrud, J. A., Kupriyanova, E., Lu, C. C., Mackenzie, M., Mah, C., MacIntosh, H., Merrin, K. L., Miskelly, A., Mitchell, M. L., Moore, K., Murray, A., O’Loughlin, P. M., Paxton, H., Pogonoski, J. J., Staples, D., Watson, J. E., Wilson, R. S., Zhang, J., and Bax, N. J. (2020). The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records 13, 11.
The lower bathyal and abyssal seafloor fauna of eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Olivera, B. M., Seger, J., Horvath, M. P., and Fedosov, A. E. (2015). Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution. Brain, Behavior and Evolution 86, 58–74.
Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution.Crossref | GoogleScholarGoogle Scholar | 26397110PubMed |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012a). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Puillandre, N., Modica, M. V., Zhang, Y., Sirovich, L., Boisselier, M. C., Cruaud, C., Holford, M., and Samadi, S. (2012b). Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21, 2671–2691.
Large-scale species delimitation method for hyperdiverse groups.Crossref | GoogleScholarGoogle Scholar | 22494453PubMed |

Puillandre, N., Brouillet, S., and Achaz, G. (2021). ASAP: Assemble Species by Automatic Partitioning. Molecular Ecology Resources 21, 609–620.
ASAP: Assemble Species by Automatic Partitioning.Crossref | GoogleScholarGoogle Scholar | 33058550PubMed |

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Rex, M. A., and Etter, R. J. (1998). Bathymetric patterns of body size: implications for deep-sea biodiversity. Deep-sea Research – II. Topical Studies in Oceanography 45, 103–127.
Bathymetric patterns of body size: implications for deep-sea biodiversity.Crossref | GoogleScholarGoogle Scholar |

Rex, M. A., Etter, R. J., Clain, A. J., and Hill, M. S. (1999). Bathymetric patterns of body size in deep-sea gastropods. Evolution 53, 1298–1301.
| 28565515PubMed |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Russini, V., Giannuzzi-Savelli, R., Pusateri, F., Prkic, J., Fassio, G., Modica, M. V., and Oliverio, M. (2020). Candidate cases of poecilogony in Neogastropoda: implications for the systematics of the genus Raphitoma Bellardi, 1847. Invertebrate Systematics 34, 293–318.
Candidate cases of poecilogony in Neogastropoda: implications for the systematics of the genus Raphitoma Bellardi, 1847.Crossref | GoogleScholarGoogle Scholar |

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 3447015PubMed |

Schepman, M. M. (1913). The Prosobranchia of the Siboga Expedition. Part V. Toxoglossa, with a supplement. Siboga-Expeditie 49, 365–452.

Shuto, T. (1971). Taxonomical notes on the turrids of the Siboga Collection originally described by M. M. Schepman, 1931 (Part 3). Venus Kyoto 30, 5–22.

Stahlschmidt, P., and Chino, M. (2012). A new species of Gymnobela (Gastropoda: Raphitomidae) from the Central Pacific. Miscellanea Malacologica 5, 95–98.

Sysoev, A. V. (1988). Ultra-abyssal findings of the family Turridae (Gastropoda, Toxoglossa) in the Pacific Ocean. Зоологический журнал 67, 965–973.

Sysoev, A. V. (1990). Gastropods of the family Turridae (Gastropoda: Toxoglossa) of the Nasca and Sala-y-Gomez underwater ridges. Trudy Instituta Okeanologii Akademii Nauk SSSR 124, 245–260.

Sysoev, A. V. (1996a). Deep-sea conoidean gastropods collected by the John Murray Expedition, 1933–34. Bulletin of the Natural History Museum Zoology Series 62, 1–30.

Sysoev, A. V. (1996b). Taxonomic notes on South African deep-sea conoidean gastropods (Gastropoda: Conoidea) described by K.H. Barnard, 1963. The Nautilus 110, 22–29.

Sysoev, A. V. (1997). Mollusca Gastropoda: new deep-water turrid gastropods (Conoidea) from eastern Indonesia. Mémoires du Museum National d’Histoire Naturelle 172, 325–355.

Sysoev, A. V., and Bouchet, P. (2001). New and uncommon turriform gastropods (Gastropoda: Conoidea) from the South-West Pacific. Mémoires du Museum National d’Histoire Naturelle 185, 271–320.

Sysoev, A. V., and Ivanov, D. L. (1985). New taxa of the family Turridae (Gastropoda, Toxoglossa) from the Naska Ridge (south east Pacific). Зоологический журнал 64, 194–205.

Sysoev, A. V., and Kantor, Y. I. (1986). New and rare abyssal species of the family Turridae (Gastropoda, Toxoglossa) in the northern part of the Pacific Ocean. Зоологический журнал 65, 1457–1469.

Sysoev, A. V., and Kantor, Y. I. (1987). Three new species of the deep-sea mollusc genus Famelica (Gastropoda, Toxoglossa, Turridae). Зоологический журнал 66, 1255–1258.

Taylor, J. D. (1990). The anatomy of the foregut and relationships in the Terebridae. Malacologia 32, 19–34.

Taylor, J. D., Kantor, Y. I., and Sysoev, A. V. (1993). Foregut anatomy, feeding mechanisms, relationships and classification of the Conoidea (=Toxoglossa) (Gastropoda). Bulletin of the British Museum (Natural History), Zoology 59, 125–170.

Thistle, D., Yingst, J. Y., and Fauchald, K. (1985). A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic). Marine Geology 66, 91–112.
A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic).Crossref | GoogleScholarGoogle Scholar |

Verrill, A. E. (1884). Second catalogue of Mollusca recently added to the fauna of the New England coast. Transactions of the Connecticut Academy vi, 139–294.

Watson, R. B. (1881). Mollusca of H.M.S. ‘Challenger’ expedition.—Part IX. Journal of the Linnean Society of London, Zoology 15, 413–455.
Mollusca of H.M.S. ‘Challenger’ expedition.—Part IX.Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The Perils of DNA Barcoding and the Need for Integrative Taxonomy. Systematic Biology 54, 844–851.
The Perils of DNA Barcoding and the Need for Integrative Taxonomy.Crossref | GoogleScholarGoogle Scholar | 16243769PubMed |

Williams, A. (2018) IN2018_V06. Status and recovery of deep-sea coral communities on seamounts in iconic Australian Marine Reserves, Hobart, Tas., Australia.