Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Across the benthic and pelagic realms: a species‐level phylogeny of Benthesicymidae (Crustacea : Decapoda)

Alexander L. Vereshchaka orcid.org/0000-0002-6756-2468 A B , Dmitry N. Kulagin A and Anastasiia A. Lunina https://orcid.org/0000-0002-1105-8027 A
+ Author Affiliations
- Author Affiliations

A Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimov Prospekt 36, RU-117997 Moscow, Russia.

B Corresponding author. Email: alv@ocean.ru

Invertebrate Systematics 35(7) 776-796 https://doi.org/10.1071/IS21004
Submitted: 27 January 2021  Accepted: 16 April 2021   Published: 23 September 2021

Abstract

Benthesicymidae is a monophyletic group of Decapoda adapted to a life on the sea-floor, in the near-bottom layer, in the bathy- and in the mesopelagic, within an impressive depth range from a few hundred metres (Gennadas) to several thousand metres (Benthesicymus). Higher taxa are known to conquer all main oceanic biotopes such as the benthic, benthopelagic, and pelagic and a wide depth range but few family-level groups have clades evolved within all these oceanic realms. Therefore, the global fauna of Benthesicymidae provides a rare opportunity for an insight into phylogenetic processes favouring colonisation of all principal oceanic biotopes. The first comprehensive phylogenetic study of Benthesicymidae (all 37 valid species) is based on six molecular markers and 105 morphological characters (including 72 female and male copulatory characters). Analyses resulted in trees with similar topology and the same set of robust clades. Molecular methods based on 167 sequences (84 new) provided better resolution of deeper nodes and generally higher support of the clades, while morphological methods allowed analyses of all valid species of the global fauna. Phylogenetic analyses support the monophyly and robustness of all currently known genera except Gennadas, which was split into Gennadas Bate, 1881, Amalopenaeus Smith, 1882, and Notogennema gen. nov. We also retrieved two major clades for which we erected two new subfamilies: Benthesicyminae subfam. nov. (presumably benthic, genera Altelatipes, Bathicaris, Benthesicymus, and Benthonectes) and Gennadinae subfam. nov. (presumably pelagic, genera Amalopenaeus, Bentheogennema, Benthoecetes, Boreogennema, Gennadas, Maorrancaris, and Notogennema gen. nov.). We revealed two groups of morphological characters, that are interlinked evolutionarily: (1) petasma and thelycum; (2) body, mouthparts, and pereopods. Morphological traits within benthic and pelagic clades are different, a model explaining the differences is proposed. Along with previous studies, our results confirm the idea that the elaboration of the copulatory structures is a key to successful colonisation of the pelagic realm. These results extend our knowledge about evolution in the largest habitual biotope of our planet and phylogenetic processes favouring colonisation of all principal oceanic biotopes.

Keywords: Crustacea, evolutionary traits, molecular markers, morphological characters, phylogenetic analysis.


References

Apakupakul, K., Siddall, M. E., and Burreson, E. M. (1999). Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution 12, 350–359.
Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences.Crossref | GoogleScholarGoogle Scholar | 10413628PubMed |

Bauer, R. T. (1986). Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism. The Biological Bulletin 170, 11–31.
Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism.Crossref | GoogleScholarGoogle Scholar |

Bauer, R. T. (1991). Sperm transfer and storage structures in penaeoid shrimps: a functional and phylogenetic perspective. In ‘Crustacean Sexual Biology’. pp. 183–207. (Columbia University Press: New York, NY, USA.)

Bauer, R. T. (1994). Usage of the terms thelycum and spermatheca in the reproductive morphology of the Decapoda, with special reference to the Penaeoidea. Journal of Crustacean Biology 14, 715–721.
Usage of the terms thelycum and spermatheca in the reproductive morphology of the Decapoda, with special reference to the Penaeoidea.Crossref | GoogleScholarGoogle Scholar |

Bracken, H. D., Toon, A., Felder, D. L., Martin, J. W., Finley, M., Rasmussen, J., Palero, F., and Crandall, K. (2009). The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Systematics & Phylogeny 67, 99–116.

Bracken, H. D., De Grave, S., Toon, A., Felder, D. L., and Crandall, K. A. (2010). Phylogenetic position, systematic status, and divergence time of the Procarididea (Crustacea: Decapoda). Zoologica Scripta 39, 198–212.
Phylogenetic position, systematic status, and divergence time of the Procarididea (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, H. D., Felder, D. L., Vollmer, N. L., Martin, J. W., and Crandall, K. A. (2012). Phylogenetics links monster larva to deep-sea shrimp. Ecology and Evolution 2, 2367–2373.
Phylogenetics links monster larva to deep-sea shrimp.Crossref | GoogleScholarGoogle Scholar | 23145324PubMed |

Bracken-Grissom, H. D., Ahyong, S. T., Wilkinson, R. D., Feldmann, R. M., Schweitzer, C. E., Breinholt, J. W., Bendall, M., Palero, F., Chan, T.-Y., Felder, D. L., Robles, R., Chu, K.-H., Tsang, L.-M., Kim, D., Martin, J. W., and Crandall, K. A. (2014). The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology 63, 457–479.
The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida).Crossref | GoogleScholarGoogle Scholar | 24562813PubMed |

Carreton, M., Planella, L., Heras, S., García-Marín, J. L., Agulló, M., Clavel-Henry, M., Rotllant, G., Dos Santos, A., and Roldán, M. I. (2019). Morphological identification and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae. PeerJ 7, e6063.
Morphological identification and molecular confirmation of the deep-sea blue and red shrimp Aristeus antennatus larvae.Crossref | GoogleScholarGoogle Scholar | 30775163PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Clarke, K. R., and Warwick, R. M. (2001). ‘Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation’, 2nd edn. (PRIMER-E: Plymouth, UK.)

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S., Macaranas, J., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Molecular phylogenetics of the Arthropoda: relationships based on histone H3 and U2 snRNA DNA sequences. Australian Journal of Zoology 46, 419–437.
Molecular phylogenetics of the Arthropoda: relationships based on histone H3 and U2 snRNA DNA sequences.Crossref | GoogleScholarGoogle Scholar |

da Silva, J. M., dos Santos, A., Costa, A. C., Cunha, M. R., Costa, F. O., and Carvalho, G. R. (2011). Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS One 6, e19449.
Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca).Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Hammer, Ø., Harper, D. A., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9..

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
| 28013191PubMed |

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 12116640PubMed |

Lunina, A., and Vereshchaka, A. (2017). The role of the male copulatory organs in the colonization of the pelagic by shrimp-like eucarids. Deep-sea Research – II. Topical Studies in Oceanography 137, 327–334.
The role of the male copulatory organs in the colonization of the pelagic by shrimp-like eucarids.Crossref | GoogleScholarGoogle Scholar |

Lunina, A. A., Kulagin, D. N., and Vereshchaka, A. L. (2019a). A hard-earned draw: phylogeny-based revision of the deep-sea shrimp Bentheogennema (Decapoda, Benthesicymidae) transfers two species to other genera and reveals two new species. Zoological Journal of the Linnean Society 187, 1155–1172.
A hard-earned draw: phylogeny-based revision of the deep-sea shrimp Bentheogennema (Decapoda, Benthesicymidae) transfers two species to other genera and reveals two new species.Crossref | GoogleScholarGoogle Scholar |

Lunina, A. A., Kulagin, D. N., and Vereshchaka, A. L. (2019b). Oplophoridae (Decapoda: Crustacea): phylogeny, taxonomy and evolution studied by a combination of morphological and molecular methods. Zoological Journal of the Linnean Society 186, 213–232.
Oplophoridae (Decapoda: Crustacea): phylogeny, taxonomy and evolution studied by a combination of morphological and molecular methods.Crossref | GoogleScholarGoogle Scholar |

Ma, K. Y., Chan, T.-Y., and Chu, K. H. (2009). Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 53, 45–55.
Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes.Crossref | GoogleScholarGoogle Scholar | 19477284PubMed |

Ma, K. Y., Chan, T.-Y., and Chu, K. H. (2011). Refuting the six-genus classification of Penaeus s.l. (Dendrobranchiata, Penaeidae): a combined analysis of mitochondrial and nuclear genes. Zoologica Scripta 40, 498–508.
Refuting the six-genus classification of Penaeus s.l. (Dendrobranchiata, Penaeidae): a combined analysis of mitochondrial and nuclear genes.Crossref | GoogleScholarGoogle Scholar |

Nixon, K. (1999). The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The parsimony ratchet, a new method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Reuschel, S., and Schubart, C. D. (2006). Phylogeny and geographic differentiation of Atlanto–Mediterranean species of the genus Xantho (Crustacea: Brachyura: Xanthidae) based on genetic and morphometric analyses. Marine Biology 148, 853–866.
Phylogeny and geographic differentiation of Atlanto–Mediterranean species of the genus Xantho (Crustacea: Brachyura: Xanthidae) based on genetic and morphometric analyses.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Schubart, C. D. (2009). Mitochondrial DNA and decapod phylogenies: the importance of pseudogenes and primer optimization. In ‘Decapod Crustacean Phylogenetics’. (Eds J. W. Martin, K. A. Crandall, and D. L. Felder.) Crustacean Issues18, pp. 47–65. (CRC Press: Boca Raton, FL, USA.)

Schubart, C. D., and Huber, M. G. J. (2006). Genetic comparison of German populations of the stone crayfish, Austropotamobius torrentium (Crustacea: Astacidae). Bulletin Français de la Pêche et de la Pisculture 380–381, 1019–1028.
Genetic comparison of German populations of the stone crayfish, Austropotamobius torrentium (Crustacea: Astacidae).Crossref | GoogleScholarGoogle Scholar |

Schubart, C. D., Cuesta, J. A., and Felder, D. L. (2002). Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea. Journal of Crustacean Biology 22, 28–44.
Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea.Crossref | GoogleScholarGoogle Scholar |

Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution 12, 335–337.
raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |

Smith, S. I. (1882). Reports on the results of dredging under the supervisión of Alexander Agassiz, on the east coast of the United States during the summer of 1880, by the U.S. Coast Survey Steamer “Blake”, Commander J.R. Bartlett, U.S.N., commanding. Bulletin of the Museum of Comparative Zoology at Harvard College 10, 1–108.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 21546353PubMed |

Tsang, L. M., Ma, K. Y., Ahyong, S. T., Chan, T. Y., and Chu, K. H. (2008). Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution 48, 359–368.
Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia.Crossref | GoogleScholarGoogle Scholar | 18501643PubMed |

Vereshchaka, A. L. (2017). The shrimp superfamily Sergestoidea: a global phylogeny with definition of new families and an assessment of the pathways into principal biotopes. Royal Society Open Science 4, 170221.
The shrimp superfamily Sergestoidea: a global phylogeny with definition of new families and an assessment of the pathways into principal biotopes.Crossref | GoogleScholarGoogle Scholar | 28989733PubMed |

Vereshchaka, A. L., Lunina, A. A., and Olesen, J. (2017). The genus Gennadas (Benthesicymidae: Decapoda): morphology of copulatory characters, phylogeny and coevolution of genital structures. Royal Society Open Science 4, 171288.
The genus Gennadas (Benthesicymidae: Decapoda): morphology of copulatory characters, phylogeny and coevolution of genital structures.Crossref | GoogleScholarGoogle Scholar | 29308257PubMed |

Vereshchaka, A. L., Kulagin, D. N., and Lunina, A. A. (2019). A phylogenetic study of krill (Crustacea: Euphausiacea) reveals new taxa and co‐evolution of morphological characters. Cladistics 35, 150–172.
A phylogenetic study of krill (Crustacea: Euphausiacea) reveals new taxa and co‐evolution of morphological characters.Crossref | GoogleScholarGoogle Scholar |

Vereshchaka, A. L., Corbari, L., Kulagin, D. N., Lunina, A. A., and Olesen, J. (2020). A phylogeny-based revision of the shrimp genera Altelatipes, Benthonectes and Benthesicymus (Crustacea: Decapoda: Benthesicymidae) Zoological Journal of the Linnean Society 189, 207–227.
A phylogeny-based revision of the shrimp genera Altelatipes, Benthonectes and Benthesicymus (Crustacea: Decapoda: Benthesicymidae)Crossref | GoogleScholarGoogle Scholar |

Wong, J. M., Pérez-Moreno, J. L., Chan, T. Y., Frank, T. M., and Bracken-Grissom, H. D. (2015). Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda). Molecular Phylogenetics and Evolution 83, 278–292.
Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar | 25482362PubMed |