Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A new genus of frenulates (Annelida: Siboglinidae) from shallow waters of the Yenisey River estuary, Kara Sea

N. P. Karaseva https://orcid.org/0000-0001-8935-3205 A D , N. N. Rimskaya-Korsakova https://orcid.org/0000-0001-9576-2435 A , I. A. Ekimova https://orcid.org/0000-0002-1846-0780 A , M. M. Gantsevich https://orcid.org/0000-0002-4854-2787 A , V. N. Kokarev B , S. V. Kremnyov A , M. I. Simakov C , A. A. Udalov C , A. A. Vedenin C and V. V. Malakhov A
+ Author Affiliations
- Author Affiliations

A Lomonosov Moscow State University, RU-119991 Moscow, Russia.

B Faculty of Biosciences and Aquaculture, Nord University, NO-8049 Bodø, Norway.

C Shirshov Institute of Oceanology, RU-117997 Moscow, Russia.

D Corresponding author. Email: oasisia@gmail.com

Invertebrate Systematics 35(8) 857-875 https://doi.org/10.1071/IS20075
Submitted: 16 October 2020  Accepted: 12 May 2021   Published: 5 November 2021

Abstract

Only seven frenulate species are currently known along the Eurasian coast of the Arctic Ocean. We describe a new genus and a new species of frenulates Crispabrachia yenisey, gen. nov. et sp. nov. The morphological analysis involved standard anatomical techniques, semithin sections and scanning electron microscopy (SEM). The molecular study included four markers (partial COI, 16S, 18S and 28S) and implemented Bayesian and Maximum likelihood phylogenetic approaches. The description of Crispabrachia gen. nov. is the first documented finding of frenulates in the Kara Sea at the estuary of the Yenisey River in rather shallow water (28 m). The establishment of a new genus is warranted based on the composition of morphological characters and several specific features including free, comparatively short curly tentacles, a triangular cephalic lobe with amplate base, the valvate extension of the posterior part of the forepart and prominent papillae on the nonmetameric region. The tube structure with prominent frills and the worm’s numerous tentacles, metameric papillae with cuticular plaques and segmental furrow on the forepart indicate that the new genus belongs to the polybrachiid group. Although the type locality in the Yenisey River estuary is unusual for siboglinids in general, the physical conditions here are common for other frenulates habitats, i.e. salinity ~30–33, bottom water temperature –1.5°C. This finding was made in the Yenisey Gulf in the region with the highest methane concentrations in the southern part of the Kara Sea that reflects permafrost degradation under the influence of river flow. Further study of the region would help to understand the factors influencing frenulate distributions and improve our knowledge of their biodiversity.

Keywords: Siboglinidae, Frenulates, the Kara Sea, new species, ecology


References

Adegoke, O. S. (1967). Notes on the ecology of the pogonophoran genus Galathealinum Kirkegaard, 1956. Pacific Science 21, 558–561.

Aharon, P., and Fu, B. (2003). Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chemical Geology 195, 201–218.
Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients.Crossref | GoogleScholarGoogle Scholar |

Aida, M., Kanemori, M., Kubota, N., Matada, M., Sasayama, Y., and Fukumori, Y. (2008). Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a Siboglinid Polychaete) inhabiting Tsukumo Bay. Microbes and Environments 23, 81–88.
Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a Siboglinid Polychaete) inhabiting Tsukumo Bay.Crossref | GoogleScholarGoogle Scholar | 21558692PubMed |

Amon, D. J., Wiklund, H., Dahlgren, T. G., Copley, J. T., Smith, C. R., Jamieson, A. J., and Glover, A. G. (2014). Molecular taxonomy of Osedax (Annelida: Siboglinidae) in the Southern Ocean. Zoologica Scripta 43, 405–417.
Molecular taxonomy of Osedax (Annelida: Siboglinidae) in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Ax, P. (1960). ‘Die Entdeckung neuer Organisationstypen im Tierreich.’ (Die Neue Brehm Bücherei, Wittenberg.)

Baranov, B., Galkin, S., Vedenin, A., Dozorova, K., Gebruk, A., and Flint, M. (2020). Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna. Geo-Marine Letters 40, 541–557.
Methane seeps on the outer shelf of the Laptev Sea: characteristic features, structural control, and benthic fauna.Crossref | GoogleScholarGoogle Scholar |

Bartolomaeus, T. (1995). Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spirorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora. Zoomorphology 115, 161–177.
Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spirorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Bartolomaeus, T. (1998). Chaetogenesis in polychaetous Annelida– Significance for annelid systematics and the position of the Pogonophora. Zoology 100, 348–364.

Beklemishev, V. N. (1944). ‘Foundations of a Comparative Anatomy of Invertebrates.’ (Sovetskaya Nauka: Moscow, USSR.)

Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.
A marine microbial consortium apparently mediating anaerobic oxidation of methane.Crossref | GoogleScholarGoogle Scholar | 11034209PubMed |

Bright, M., and Sorgo, A. (2003). Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebrate Biology 122, 347–368.
Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae).Crossref | GoogleScholarGoogle Scholar |

Callsen-Cencic, P., and Flügel, H. J. (1995). Larval development and the formation of the gut of Siboglinum poseidoni Flügel & Langhof (Pogonophora, Perviata). Evidence of protostomian affinity. Sarsia 80, 73–89.
Larval development and the formation of the gut of Siboglinum poseidoni Flügel & Langhof (Pogonophora, Perviata). Evidence of protostomian affinity.Crossref | GoogleScholarGoogle Scholar |

Caullery, M. (1914). Sur les Siboglinidae, type nouveau dês invertébrés receuillis par l’expédition du Siboga. Bulletin de la Société Zoologique de France 39, 350–353.

Chaban, E. M., Ekimova, I. A., Schepetov, D. M., and Chernyshev, A. V. (2019). Meloscaphander grandis (Heterobranchia: Cephalaspidea), a deep-water species from the North Pacific: Redescription and taxonomic remarks. Zootaxa 4646, 385–400.
Meloscaphander grandis (Heterobranchia: Cephalaspidea), a deep-water species from the North Pacific: Redescription and taxonomic remarks.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., Hutchings, P. A., and Brown, S. (2001). Phylogenetic relationships within the Terebellomorpha. Journal of the Marine Biological Association of the United Kingdom 81, 765–773.
Phylogenetic relationships within the Terebellomorpha.Crossref | GoogleScholarGoogle Scholar |

Dando, P. R., Bussmann, I., Niven, S. J., O’Hara, S. C. M., Schmaljohann, R., and Taylor, L. J. (1994). A methane seep area in the Skagerrak, the habitat of the pogonophore Siboglinum poseidoni and the bivalve mollusc Thyasira sarsi. Marine Ecology Progress Series 107, 157–167.
A methane seep area in the Skagerrak, the habitat of the pogonophore Siboglinum poseidoni and the bivalve mollusc Thyasira sarsi.Crossref | GoogleScholarGoogle Scholar |

Dando, P. R., Southward, A. J., Southward, E. C., Lamont, P., and Harvey, R. (2008). Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep-sea Research – I. Oceanographic Research Papers 55, 966–996.
Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic.Crossref | GoogleScholarGoogle Scholar |

Dattagupta, S., Miles, L. L., Barnabei, M. S., and Fisher, C. R. (2006). The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. The Journal of Experimental Biology 209, 3795–3805.
The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply.Crossref | GoogleScholarGoogle Scholar | 16985196PubMed |

Distel, D. L., Lane, D. A., Olsen, G. L., Giovannoni, S. G., Pace, N. R., Stahl, D. A., and Felbeck, H. (1988). Sulfur oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences. Journal of Bacteriology 170, 2506–2510.
Sulfur oxidizing bacterial endosymbionts: Analysis of phylogeny and specificity by 16S rRNA sequences.Crossref | GoogleScholarGoogle Scholar | 3286609PubMed |

Dmitrieva, N. A. (1980). The structure of Nereilinum murmanicum – pogonophores from the Barents Sea. Ph.D. Thesis, State University A. A. Zhdanova, Leningrad, USSR.

Dobrovolskiy, A. D., and Zalogin, B. S. (1965). Priroda i khozyaistvo (Nature and Economy). (Mysl. Morya SSSR (Seas of the Soviet Union): Moscow, USSR.)

Dolgopolova, E. N. (2015). Regularities in the motion of water and sediments at the mouth of a river of estuarine-deltaic type: case study of the Yenisei R. Water Resources 42, 198–207.
Regularities in the motion of water and sediments at the mouth of a river of estuarine-deltaic type: case study of the Yenisei R.Crossref | GoogleScholarGoogle Scholar |

Duperron, S., De Beer, D., Zbinden, M., Boetius, A., Schipani, V., Kahil, N., and Gaill, F. (2009). Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiology Ecology 69, 395–409.
Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar | 19583785PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Eichinger, I., Klepal, W., Schmid, M., and Bright, M. (2011). Organization and Microanatomy of the Sclerolinum contortum Trophosome (Polychaeta, Siboglinidae). The Biological Bulletin 220, 140–153.
Organization and Microanatomy of the Sclerolinum contortum Trophosome (Polychaeta, Siboglinidae).Crossref | GoogleScholarGoogle Scholar | 21551450PubMed |

Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftiapachyptila Jones (Vestimentifera). Science 213, 336–338.
Chemoautotrophic potential of the hydrothermal vent tube worm, Riftiapachyptila Jones (Vestimentifera).Crossref | GoogleScholarGoogle Scholar | 17819905PubMed |

Flint, M. V., Poyarkov, S. G., and Rimsky-Korsakov, N. A. (2016). Ecosystems of the Russian Arctic-2015 (63rd Cruise of the Research Vessel Akademik Mstislav Keldysh). Oceanology 56, 459–461.
Ecosystems of the Russian Arctic-2015 (63rd Cruise of the Research Vessel Akademik Mstislav Keldysh).Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Forget, N. L., Perez, M., and Kim Juniper, S. (2015). Molecular study of bacterial diversity within the trophosome of the vestimentiferan tubeworm Ridgeia piscesae. Marine Ecology 36, 35–44.
Molecular study of bacterial diversity within the trophosome of the vestimentiferan tubeworm Ridgeia piscesae.Crossref | GoogleScholarGoogle Scholar |

Gardiner, S. L., Jones, M. L., and Anders, J. J. (1991). Scanning Electron Microscopical Observations of Fibrillar Structures in the Trophosome of Riftia pachyptila (Vestimentifera: Axonobranchia). Transactions of the American Microscopical Society 110, 47–52.
Scanning Electron Microscopical Observations of Fibrillar Structures in the Trophosome of Riftia pachyptila (Vestimentifera: Axonobranchia).Crossref | GoogleScholarGoogle Scholar |

Georgieva, M. N., Wiklund, H., Bell, J. B., Eilertsen, M. H., Mills, R. A., Little, C. T. S., and Glover, A. G. (2015). A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species. BMC Evolutionary Biology 15, 280.
A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species.Crossref | GoogleScholarGoogle Scholar | 26667806PubMed |

Glukhovets, D. I., and Goldin, Y. A. (2020). Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data. Oceanologia 62, 364–373.
Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data.Crossref | GoogleScholarGoogle Scholar |

Guo, L., Semiletov, I., Gustafsson, Ö., Ingri, J., Andersson, P., Dudarev, O., and White, D. (2004). Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export. Global Biogeochemical Cycles 18, GB1036.
Characterization of Siberian Arctic coastal sediments: implications for terrestrial organic carbon export.Crossref | GoogleScholarGoogle Scholar |

Gureeva, M. A. (1981). Pogonophores of the Carribean Sea. Trudy Instituta Okeanologii PP Shirshov 115, 183–194.

Halanych, K. M. (2005). Molecular phylogeny of siboglinid annelids (aka pogonophorans): a review. Hydrobiologia 535–536, 297–307.
Molecular phylogeny of siboglinid annelids (aka pogonophorans): a review.Crossref | GoogleScholarGoogle Scholar |

Halanych, K. M., Lutz, R. A., and Vrijenhoek, R. C. (1998). Evolutionary origins and age of vestimentiferan tube-worms. Cahiers de Biologie Marine 39, 355–358.

Halanych, K. M., Feldman, R. A., and Vrijenhoek, R. C. (2001). Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not to frenulate pogonophorans (Siboglinidae, Annelida). The Biological Bulletin 201, 65–75.
Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not to frenulate pogonophorans (Siboglinidae, Annelida).Crossref | GoogleScholarGoogle Scholar | 11526065PubMed |

Hyman, L. H. (1959). ‘The Invertebrates: Smaller Coelomate Groups.’ (McGraw Hill: New York, NY, USA.)

Imajima, M. (1973). A new species of the genus Oligobrachia (Pogonophora) collected from Tsukumo Bay, Noto Peninsula. Annual Report of Noto Marine Lab 13, 7–12.

Ivanov, A. V. (1959) Pogonofory i ih geograficheskoe rasprostranenie [Pogonophorans and their geographical distribution]. In ‘Itogi Nauki. Dostijeniya okeanologii’. pp. 258–284. (VINITI: Moscow, USSR.) [In Russian].

Ivanov, A. V. (1960). Pogonofory [Pogonophora]. In ‘Fauna SSSR – Novaya seriya. Vol. 75’. pp. 1–271. (Publishing House of the Academy of Sciences of the USSR.) [In Russian].

Ivanov, A. V. (1961). Deux genera nouveaux de pogonophores diplobrachiaux Nereilinum et Siboglinoides. Cahiers de Biologie Marine 2, 381–397.

Ivanov, A. V. (1963). ‘Pogonophora.’ (Translated from the Russian and edited by D.B. Carlisle. With additional material by Eve C. Southward.) (Consultants Bureau: New York, NY, USA.) 10.5962/bhl.title.10169

Ivanov, A. V., and Gureeva, M. A. (1980). A new species of the genus Oligobrachia (Pogonophora) from Bab-el-mandeb Strait. Zoologichesky Zhurnal 59, 1587–1591.

Ivanova-Kazas, O. M. (2007). On the problem of the origin of Pogonophora. Russian Journal of Marine Biology 33, 338–342.
On the problem of the origin of Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Jägersten, G. (1957). Investigations on Siboglinum ekmani n. sp., encountered in Skagerak. Zoologiska Bidrag från Uppsala 31, 211–252.

Johansson, K. E. (1937). Über Lamellisabella zachsi und ihre systematische Stellung. Zoologischer Anzeiger 117, 23–26.

Johansson, K. E. (1939). Lamellisabella zachsi Uschakow, ein Vertreter 72 Rev. Nordestina Biol. einer neuen Tierklasse Pogonophora. Zoologiska Bidrag från Uppsala 18, 253–268.

Jones, M. L. (1985). On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bulletin of the Biological Society of Washington 6, 117–158.

Jones, M. L., and Gardiner, S. L. (1988). Evidence for a transient digestive tract in Vestimentifera. Proceedings of the Biological Society of Washington 101, 423–433.

Jones, M. L., and Gardiner, S. L. (1989). On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila. The Biological Bulletin 177, 254–276.
On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila.Crossref | GoogleScholarGoogle Scholar |

Joye, S. B., Boetius, A., Orcutt, B. N., Montoya, J. P., Schulz, H. N., Erickson, M. J., and Lugo, S. K. (2004). The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology 205, 219–238.
The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps.Crossref | GoogleScholarGoogle Scholar |

Kanafina, M. M., Golikov, A. V., Zakharov, D. V., Jakovleva, A. I., Salnikova, M. M., Sharaphutdinova, D. N., Porfireva, A. G., and Sabbirov, R. M. (2019). Pontus Euxinus. In ‘Proceedings of XI all-Russian Scientific and Applied Conference for Young Scientists on the Water Systems Problems, Dedicated to the Remembrance of Prof. S. B. Gulin’, 23–27 September 2019, Sevastopol, Russian Federation. pp. 27–28. (IBSS: Sevastopol, Russian Federation.)

Karaseva, N. P., Gantsevich, M. M., Obzhirov, A. I., Shakirov, R. B., Starovoytov, A. V., Smirnov, R. V., and Malakhov, V. V. (2019). Siboglinids (Annelida, Siboglinidae) as possible hydrocarbon indicators as exemplified by the Sea of Okhotsk. Doklady Biological Sciences 486, 72–75.
Siboglinids (Annelida, Siboglinidae) as possible hydrocarbon indicators as exemplified by the Sea of Okhotsk.Crossref | GoogleScholarGoogle Scholar | 31317448PubMed |

Karaseva, N., Gantsevich, M., Obzhirov, A., Shakirov, R., Starovoitov, A., Smirnov, R., and Malakhov, V. (2020). Correlation of the siboglinid (Annelida: Siboglinidae) distribution to higher concentrations of hydrocarbons in the Sea of Okhotsk. Marine Pollution Bulletin 158, 111448.
Correlation of the siboglinid (Annelida: Siboglinidae) distribution to higher concentrations of hydrocarbons in the Sea of Okhotsk.Crossref | GoogleScholarGoogle Scholar | 32753224PubMed |

Katz, S., Klepal, W., and Bright, M. (2011). The Osedax trophosome: organization and ultrastructure. The Biological Bulletin 220, 128–139.
The Osedax trophosome: organization and ultrastructure.Crossref | GoogleScholarGoogle Scholar | 21551449PubMed |

Kojima, S., Segawa, R., Hashimoto, J., and Ohta, S. (1997). Molecular phylogeny of vestimentiferans collected around Japan, revealed by the nucleotide sequences of mitochondrial DNA. Marine Biology 127, 507–513.
Molecular phylogeny of vestimentiferans collected around Japan, revealed by the nucleotide sequences of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Kvist, S., and Siddall, M. E. (2013). Phylogenomics of Annelida revisited: a cladistic approach using genome‐wide expressed sequence tag data mining and examining the effects of missing data. Cladistics 29, 435–448.
Phylogenomics of Annelida revisited: a cladistic approach using genome‐wide expressed sequence tag data mining and examining the effects of missing data.Crossref | GoogleScholarGoogle Scholar |

Lê, H. L., Lecointre, G., and Perasso, R. (1993). A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Molecular Phylogenetics and Evolution 2, 31–51.
A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms.Crossref | GoogleScholarGoogle Scholar | 8081546PubMed |

Lee, Y. M., Noh, H., Lee, D., Kim, J. H., Jin, Y. K., and Paull, C. (2019). Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea. Polar Biology 42, 2305–2312.
Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A. (2005). Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology – an Annual Review 43, 1–46.
Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes.Crossref | GoogleScholarGoogle Scholar |

Li, Y., Kocot, K. M., Whelan, N. V., Santos, S. R., Waits, D. S., Thornhill, D. J., and Halanych, K. M. (2017). Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods. Zoologica Scripta 46, 200–213.
Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods.Crossref | GoogleScholarGoogle Scholar |

Lösekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., and Dubilier, N. (2008). Endosymbioses between bacteria and deep‐sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environmental Microbiology 10, 3237–3254.
Endosymbioses between bacteria and deep‐sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea).Crossref | GoogleScholarGoogle Scholar | 18707616PubMed |

Malakhov, V. V., and Galkin, S. V. (1998). ‘Vestimentiferans – the Gutless Invertebrates from Marine Depths.’ (KMK Scientific Press Ltd: Moscow, Russian Federation.)

Malakhov, V. V., Obzhirov, V. I., and Tarasov, V. G. (1992). Concerning relation of pogonophora of Siboglinum genus to zone of high concentration of methane. Doklady Akademii Nauk 325, 195–197.

Mane-Garzon, F., and Montero, P. (1985). On a new type of tubicolous worm: Lamellibrachia victori n. sp. Vestimentifera). Proposal of a new phylum: Mesoneurophora. Revista de Biologia del Uruguay 8, 1–28.

McHugh, D. (1997). Molecular evidence that echiurans and pogonophores are derived Annelids. Proceedings of the National Academy of Sciences of the United States of America 94, 8006–8009.
Molecular evidence that echiurans and pogonophores are derived Annelids.Crossref | GoogleScholarGoogle Scholar | 9223304PubMed |

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar | 23418397PubMed |

Moskalev, L. I. (1961). Pogonophora in the Barents Sea. Doklady Akademii Nauk SSSR 137, 730–731.

Naganuma, T., Elsaied, H. E., Hoshii, D., and Kimura, H. (2005). Bacterial endosymbioses of gutless tube-dwelling worms in non hydrothermal vent habitats. Marine Biotechnology 7, 416–428.
Bacterial endosymbioses of gutless tube-dwelling worms in non hydrothermal vent habitats.Crossref | GoogleScholarGoogle Scholar | 16088356PubMed |

Niemann, H., Lösekann, T., De Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M., and Foucher, J. P. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854–858.
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.Crossref | GoogleScholarGoogle Scholar | 17051217PubMed |

Norén, M., and Jondelius, U. (1999). Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences. Cladistics 15, 103–112.
Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R., Martin, A. P., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). The simple fool’s guide to PCR. Department of Zoology Special Publication, University of Hawaii, Honolulu, HI, USA.

Purschke, G., Bleidorn, C., and Struck, T. H. (2014). Systematics, evolution and phylogeny of Annelida – a morphological perspective. Memoirs of the Museum of Victoria 71, 247–269.
Systematics, evolution and phylogeny of Annelida – a morphological perspective.Crossref | GoogleScholarGoogle Scholar |

Puslednik, L., and Serb, J. M. (2008). Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Molecular Phylogenetics and Evolution 48, 1178–1188.
Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology.Crossref | GoogleScholarGoogle Scholar | 18579415PubMed |

Rimskaya-Korsakova, N. N., Karaseva, N. P., Kokarev, V. N., Simakov, M. I., Gantsevich, M. M., and Malakhov, V. V. (2020). First discovery of Pogonophora (Annelida, Siboglinidae) in the Kara Sea Coincide with the area of high methane concentration. Doklady Biological Sciences 490, 25–27.
First discovery of Pogonophora (Annelida, Siboglinidae) in the Kara Sea Coincide with the area of high methane concentration.Crossref | GoogleScholarGoogle Scholar | 32342322PubMed |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Rouse, G. W. (2001). A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zoological Journal of the Linnean Society 132, 55–80.
A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera.Crossref | GoogleScholarGoogle Scholar |

Rouse, G. W., and Fauchald, K. (1995). The articulation of annelids. Zoologica Scripta 24, 269–301.
The articulation of annelids.Crossref | GoogleScholarGoogle Scholar |

Rouse, G. W., and Fauchald, K. (1997). Cladistics and polychaetes. Zoologica Scripta 26, 139–204.
Cladistics and polychaetes.Crossref | GoogleScholarGoogle Scholar |

Rouse, G. W., Goffredi, S. K., and Vrijenhoek, R. C. (2004). Osedax: bone-eating marine worms with dwarf males. Science 305, 668–671.
Osedax: bone-eating marine worms with dwarf males.Crossref | GoogleScholarGoogle Scholar | 15286372PubMed |

Rousset, V., Rouse, G. W., Siddall, M. E., Tillier, A., and Pleijel, F. (2004). The phylogenetic position of Siboglinidae (Annelida) inferred from 18S rRNA, 28S rRNA and morphological data. Cladistics 20, 518–533.
The phylogenetic position of Siboglinidae (Annelida) inferred from 18S rRNA, 28S rRNA and morphological data.Crossref | GoogleScholarGoogle Scholar |

Sasayama, Y., Higashide, Y., Sakai, M., Matada, M., and Fukumori, Y. (2007). Relationship between the lifestyle of a siboglinid (Pogonophoran) polychaete, Oligobrachia mashikoi, and the total sulfide and nitrogen levels in its habitat. Zoological Science 24, 131–136.
Relationship between the lifestyle of a siboglinid (Pogonophoran) polychaete, Oligobrachia mashikoi, and the total sulfide and nitrogen levels in its habitat.Crossref | GoogleScholarGoogle Scholar | 17409726PubMed |

Sauter, E. J., Muyakshin, S. I., Charlou, J. L., Schlüter, M., Boetius, A., Jerosch, K., Damm, E., Foucher, J. P., and Klages, M. (2006). Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters 243, 354–365.
Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles.Crossref | GoogleScholarGoogle Scholar |

Savvichev, A. S., Kadnikov, V. V., Kravchishina, M. D., Galkin, S. V., Novigatskii, A. N., Sigalevich, P. A., Merkel, A. Y., Ravin, N. V., Pimenov, N. V., and Flint, M. V. (2018). Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community. Geomicrobiology Journal 35, 411–423.
Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community.Crossref | GoogleScholarGoogle Scholar |

Schmaljohann, R., and Flügel, H. J. (1987). Methane-oxidizing bacteria in Pogonophora. Sarsia 72, 91–98.
Methane-oxidizing bacteria in Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Schmaljohann, R., Faber, E., Whiticar, M. J., and Dano, P. R. (1990). Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Marine Ecology Progress Series 61, 119–124.
Co-existence of methane-and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak.Crossref | GoogleScholarGoogle Scholar |

Schulze, A. (2003). Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology. Zoologica Scripta 32, 321–342.
Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology.Crossref | GoogleScholarGoogle Scholar |

Sen, A., Duperron, S., Hourdez, S., Piquet, B., Léger, N., Gebruk, A., Le Port, A. S., Svenning, M. M., and Andersen, A. C. (2018). Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLoS One 13, e0209273.
Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps.Crossref | GoogleScholarGoogle Scholar | 30592732PubMed |

Sen, A., Didriksen, A., Hourdez, S., Svenning, M. M., and Rasmussen, T. L. (2020). Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecology and Evolution 10, 1339–1351.
Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution.Crossref | GoogleScholarGoogle Scholar | 32076518PubMed |

Shakhova, N. E., Semiletov, I. P., Salyuk, A. N., Bel’cheva, N. N., and Kosmach, D. A. (2007). Methane anomalies in the near-water atmospheric layer above the shelf of East Siberian Arctic shelf. Doklady Earth Sciences 415, 764–768.
Methane anomalies in the near-water atmospheric layer above the shelf of East Siberian Arctic shelf.Crossref | GoogleScholarGoogle Scholar |

Smirnov, R. V. (1999). A new genus and two new species of Pogonophora from the Arctic Ocean. Russian Journal of Marine Biology 25, 312–319.

Smirnov, R. V. (2000). Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. Sarsia 85, 141–150.
Two new species of Pogonophora from the arctic mud volcano off northwestern Norway.Crossref | GoogleScholarGoogle Scholar |

Smirnov, R. V. (2001). Systematics and morphology of the pogonophores of the Arctic and Southern oceans. Ph.D. Thesis, 03.00.08, Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russian Federation.

Smirnov, R. V. (2005). New Species of the Genus Polarsternium (Pogonophora) from the Scotia Sea and Adjacent Waters of the Antarctic. Russian Journal of Marine Biology 31, 146–154.
New Species of the Genus Polarsternium (Pogonophora) from the Scotia Sea and Adjacent Waters of the Antarctic.Crossref | GoogleScholarGoogle Scholar |

Smirnov, R. V. (2014). A revision of the Oligobrachiidae (Annelida: Pogonophora), with notes on the morphology and distribution of Oligobrachia haakonmosbiensis Smirnov. Marine Biology Research 10, 972–982.
A revision of the Oligobrachiidae (Annelida: Pogonophora), with notes on the morphology and distribution of Oligobrachia haakonmosbiensis Smirnov.Crossref | GoogleScholarGoogle Scholar |

Smirnov, R. V., Zaitseva, O. V., and Vedenin, A. A. (2020). A remarkable pogonophoran from a desalted shallow near the mouth of the Yenisey River in the Kara Sea, with the description of a new species of the genus Galathealinum (Annelida: Pogonophora: Frenulata). Zoosystematica Rossica 29, 138–154.
A remarkable pogonophoran from a desalted shallow near the mouth of the Yenisey River in the Kara Sea, with the description of a new species of the genus Galathealinum (Annelida: Pogonophora: Frenulata).Crossref | GoogleScholarGoogle Scholar |

Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Deimling, J. S. V., Reitz, A., Haeckel, M., Flögel, S., and Hensen, C. (2009). Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Marine Ecology Progress Series 382, 69–86.
Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz).Crossref | GoogleScholarGoogle Scholar |

Southward, E. C. (1962). A new species of Galathealinum (Pogonophora) from the Canadian Arctic. Canadian Journal of Zoology 40, 385–389.
A new species of Galathealinum (Pogonophora) from the Canadian Arctic.Crossref | GoogleScholarGoogle Scholar |

Southward, E. C. (1971a). Pogonophora of the Northwest Atlantic: Nova Scotia to Florida. Smithsonian Contributions to Zoology 88, 1–29.
Pogonophora of the Northwest Atlantic: Nova Scotia to Florida.Crossref | GoogleScholarGoogle Scholar |

Southward, E. C. (1971b). Recent researches on the Pogonophora. Oceanography and Marine Biology – an Annual Review 9, 193–220.

Southward, E. C. (1972). On some Pogonophora from the Caribbean and the Gulf of Mexico. Bulletin of Marine Science 22, 739–776.

Southward, E. C. (1975). Fine structure and phylogeny of the Pogonophora. Symposium of the Zoological Society of London 36, 235–251.

Southward, E. C. (1982). Bacterial symbionts in Pogonophora. Journal of the Marine Biological Association of the United Kingdom 62, 889–906.
Bacterial symbionts in Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Southward, E. C. (1988). Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. Journal of the Marine Biological Association of the United Kingdom 68, 465–487.
Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Southward, E. C., and Brattegard, T. (1968). Pogonophora of the Northwest Atlantic: North Carolina region. Bulletin of Marine Science 18, 836–875.

Southward, A. J., and Southward, E. C. (1963). Notes on the biology of some Pogonophora. Journal of the Marine Biological Association of the United Kingdom 43, 57–64.
Notes on the biology of some Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Southward, A. J., Southward, E. C., Dando, P. R., Barrett, R. L., and Ling, R. (1986). Chemoautotrophic function of bacterial symbionts in small Pogonophora. Journal of the Marine Biological Association of the United Kingdom 66, 415–437.
Chemoautotrophic function of bacterial symbionts in small Pogonophora.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Struck, T. H., Schult, N., Kusen, T., Hickman, E., Bleidorn, C., McHugh, D., and Halanych, K. M. (2007). Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology 7, 57.
Annelid phylogeny and the status of Sipuncula and Echiura.Crossref | GoogleScholarGoogle Scholar | 17411434PubMed |

Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hösel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G., and Bleidorn, C. (2011). Phylogenomic analyses unravel annelid evolution. Nature 471, 95–98.
Phylogenomic analyses unravel annelid evolution.Crossref | GoogleScholarGoogle Scholar | 21368831PubMed |

Sukumaran, J., and Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571.
DendroPy: a Python library for phylogenetic computing.Crossref | GoogleScholarGoogle Scholar | 20421198PubMed |

Tang, W., Yueh, S., Yang, D., Fore, A., Hayashi, A., Lee, T., Fournier, S., and Holt, B. (2018). The potential and challenges of using soil moisture active passive (SMAP) Sea surface salinity to monitor Arctic Ocean freshwater changes. Remote Sensing 10, 869.
The potential and challenges of using soil moisture active passive (SMAP) Sea surface salinity to monitor Arctic Ocean freshwater changes.Crossref | GoogleScholarGoogle Scholar |

Thornhill, D. J., Wiley, A. A., Campbell, A. L., Bartol, F. F., Teske, A., and Halanych, K. M. (2008). Endosymbionts of Siboglinum fiordicum and the phylogeny of bacterial endosymbionts in Siboglinidae (Annelida). The Biological Bulletin 214, 135–144.
Endosymbionts of Siboglinum fiordicum and the phylogeny of bacterial endosymbionts in Siboglinidae (Annelida).Crossref | GoogleScholarGoogle Scholar | 18400995PubMed |

Uschakow, P. V. (1933). Eine Neue Form aus der Familie Sabellidae (Polychaeta). Zoologischer Anzeiger 104, 205–208.

Webb, M. (1964a). A new bitentagulate pogonophoran from Hardangerfjorden, Norway. Sarsia 15, 49–56.
A new bitentagulate pogonophoran from Hardangerfjorden, Norway.Crossref | GoogleScholarGoogle Scholar |

Webb, M. (1964b). Additional notes on Sclerolinum brattstromi (Pogonophora) and the establishment of a new family, Sclerolinidae. Sarsia 16, 47–58.
Additional notes on Sclerolinum brattstromi (Pogonophora) and the establishment of a new family, Sclerolinidae.Crossref | GoogleScholarGoogle Scholar |

Webb, M. (1965). Notes on the distribution of Pogonophora in Norwegian fjords. Sarsia 18, 11–15.
Notes on the distribution of Pogonophora in Norwegian fjords.Crossref | GoogleScholarGoogle Scholar |

Weigert, A., and Bleidorn, C. (2016). Current status of annelid phylogeny. Organisms, Diversity & Evolution 16, 345–362.
Current status of annelid phylogeny.Crossref | GoogleScholarGoogle Scholar |

Weigert, A., Helm, C., Meyer, M., Nickel, B., Arendt, D., Hausdorf, B., Santos, S. R., Halanych, K. M., Purschke, G., Bleidorn, C., and Struck, T. H. (2014). Illuminating the base of the annelid tree using transcriptomics. Molecular Biology and Evolution 31, 1391–1401.
Illuminating the base of the annelid tree using transcriptomics.Crossref | GoogleScholarGoogle Scholar | 24567512PubMed |

Zatsepin, A. G., Zavialov, P. O., Kremenetskiy, V. V., Poyarkov, S. G., and Soloviev, D. M. (2010). The upper desalinated layer in the Kara Sea. Oceanology 50, 657–667.
The upper desalinated layer in the Kara Sea.Crossref | GoogleScholarGoogle Scholar |

Zrzavý, J., Říha, P., Piálek, L., and Janouškovec, J. (2009). Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evolutionary Biology 9, 189.
Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes.Crossref | GoogleScholarGoogle Scholar | 19660115PubMed |