Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Synonymisation of the male-based ant genus Phaulomyrma (Hymenoptera : Formicidae) with Leptanilla based upon Bayesian total-evidence phylogenetic inference

Zachary H. Griebenow https://orcid.org/0000-0003-3385-8479
+ Author Affiliations
- Author Affiliations

Department of Entomology & Nematology, University of California, Davis, CA 95616, USA. Present address: 381 Briggs Hall, One Shields Avenue, Davis, CA 95616, USA. Email: zgriebenow@ucdavis.edu

Invertebrate Systematics 35(6) 603-636 https://doi.org/10.1071/IS20059
Submitted: 6 August 2020  Accepted: 28 December 2020   Published: 13 August 2021

Abstract

Although molecular data have proven indispensable in confidently resolving the phylogeny of many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA sequence data for leptanilline taxa that are known only from male specimens, including the monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity of undescribed male leptanilline morphospecies, the phylogeny of 35 putative morphospecies sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 discrete male morphological characters using a Bayesian total-evidence framework, with Phaulomyrma represented by morphological data only. Based upon the results of this analysis Phaulomyrma is synonymised with Leptanilla Emery, and male-based diagnoses for Leptanilla that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of that genus. This demonstrates the potential utility of a total-evidence approach in inferring the phylogeny of rare extant taxa for which molecular data are unavailable and begins a long-overdue systematic revision of the Leptanillinae that is focused on male material.


References

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19, 455–477.
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.Crossref | GoogleScholarGoogle Scholar | 22506599PubMed |

Bapst, D. W., Wright, A. M., Matzke, N. J., and Lloyd, G. T. (2016). Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12, 20160237.
Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria).Crossref | GoogleScholarGoogle Scholar | 27405380PubMed |

Barden, P., Boudinot, B. E., and Lucky, A. (2017). Where fossils dare and males matter: combined morphological and molecular analysis untangles the evolutionary history of the spider ant genus Leptomyrmex Mayr (Hymenoptera: Dolichoderinae). Invertebrate Systematics 31, 765–780.
Where fossils dare and males matter: combined morphological and molecular analysis untangles the evolutionary history of the spider ant genus Leptomyrmex Mayr (Hymenoptera: Dolichoderinae).Crossref | GoogleScholarGoogle Scholar |

Baroni Urbani, C. (1977). Materiali per una revision della sottofamiglia Leptanillinae Emery (Hymenoptera: Formicidae). Entomologica Basiliensia 2, 427–488.

Baroni Urbani, C., and de Andrade, M. L. (2006). A new Protanilla Taylor, 1990 (Hymenoptera: Formicidae: Leptanillinae) from Sri Lanka. Myrmecologische Nachrichten 8, 45–47.

Belshaw, R., and Bolton, B. (1994). A survey of the leaf litter ant fauna in Ghana, West Africa (Hymenoptera: Formicidae). Journal of Hymenoptera Research 3, 5–16.

Billen, J., Bauweleers, E., Hashim, R., and Ito, F. (2013). Survey of the exocrine system in Protanilla wallacei (Hymenoptera, Formicidae). Arthropod Structure & Development 42, 173–183.
Survey of the exocrine system in Protanilla wallacei (Hymenoptera, Formicidae).Crossref | GoogleScholarGoogle Scholar |

Bolton, B. (1990). The higher classification of the ant subfamily Leptanillinae (Hymenoptera: Formicidae). Systematic Entomology 15, 267–282.
The higher classification of the ant subfamily Leptanillinae (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute 71, 1–370.

Borowiec, M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660.
AMAS: a fast tool for alignment manipulation and computing of summary statistics.Crossref | GoogleScholarGoogle Scholar | 26835189PubMed |

Borowiec, M. L., Schulz, A., Alpert, G. D., and Baňar, P. (2011). Discovery of the worker caste and description of two new species of Anomalomyrma (Hymenoptera: Formicidae: Leptanillinae) with unique abdominal morphology. Zootaxa 2810, 1–14.
Discovery of the worker caste and description of two new species of Anomalomyrma (Hymenoptera: Formicidae: Leptanillinae) with unique abdominal morphology.Crossref | GoogleScholarGoogle Scholar |

Borowiec, M. L., Rabeling, C., Brady, S. G., Fisher, B. L., Schultz, T. R., and Ward, P. S. (2019). Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Molecular Phylogenetics and Evolution 134, 111–121.
Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants.Crossref | GoogleScholarGoogle Scholar | 30738910PubMed |

Boudinot, B. E. (2015). Contributions to the knowledge of Formicidae (Hymenoptera, Aculeata): a new diagnosis of the family, the first global male-based key to subfamilies, and a treatment of early-branching lineages. European Journal of Taxonomy 120, 1–62.
Contributions to the knowledge of Formicidae (Hymenoptera, Aculeata): a new diagnosis of the family, the first global male-based key to subfamilies, and a treatment of early-branching lineages.Crossref | GoogleScholarGoogle Scholar |

Boudinot, B. E. (2018). A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota. Arthropod Structure & Development 47, 563–613.
A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota.Crossref | GoogleScholarGoogle Scholar |

Brady, S. G., Schultz, T. R., Fisher, B. L., and Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America 103, 18172–18177.
Evaluating alternative hypotheses for the early evolution and diversification of ants.Crossref | GoogleScholarGoogle Scholar | 17079492PubMed |

Branstetter, M. G., Longino, J. T., Ward, P. S., and Faircloth, B. C. (2017). Enriching the ant tree of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. Methods in Ecology and Evolution 8, 768–776.
Enriching the ant tree of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera.Crossref | GoogleScholarGoogle Scholar |

Brazeau, M. D. (2011). Problematic character coding methods in morphology and their effects. Biological Journal of the Linnaean Society 104, 489–498.
Problematic character coding methods in morphology and their effects.Crossref | GoogleScholarGoogle Scholar |

Brues, C. T. (1925). Scyphodon, an anomalous genus of Hymenoptera of doubtful affinities. Treubia 6, 93–96.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chen, Z.-L., Shi, F.-M., and Zhou, S.-Y. (2017). First record of the monotypic genus Opamyrma (Hymenoptera: Formicidae) from China. Far Eastern Entomologist 335, 7–11.

de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics 7, 367–394.
Concepts and tests of homology in the cladistic paradigm.Crossref | GoogleScholarGoogle Scholar |

Emery, C. (1870). Studi mirmecologici. Bollettino della Società Entomologica Italiana 2, 193–201.

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788.
PHYLUCE is a software package for the analysis of conserved genomic loci.Crossref | GoogleScholarGoogle Scholar | 26530724PubMed |

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
Evolutionary trees from DNA sequences: a maximum likelihood approach.Crossref | GoogleScholarGoogle Scholar | 7288891PubMed |

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |

Griebenow, Z. H. (2020). Delimitation of tribes in the subfamily Leptanillinae (Hymenoptera: Formicidae), with a description of the male of Protanilla lini Terayama, 2009. Myrmecological News 30, 229–250.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 20525638PubMed |

Hoang, D. P., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar |

Höhna, S., Landis, M. J., and Heath, T. A. (2017). Phylogenetic inference using RevBayes. Current Protocols in Bioinformatics 57, 6.16.1–6.16.34.
Phylogenetic inference using RevBayes.Crossref | GoogleScholarGoogle Scholar |

Hsu, P.-W., Hsu, F.-C., Hsiao, Y., and Lin, C.-C. (2017). Taxonomic notes on the genus Protanilla (Hymenoptera: Formicidae: Leptanillinae) from Taiwan. Zootaxa 4268, 117–130.
| 28610386PubMed |

Katoh, K., Asimenos, G., and Toh, H. (2009). Multiple alignment of DNA sequences with MAFFT. In ‘Bioinformatics for DNA Sequence Analysis’. (Ed. D. Posada.) pp. 39–64. (Springer: New York, NY, USA.)

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.Crossref | GoogleScholarGoogle Scholar | 28968734PubMed |

Kjer, K., Borowiec, M. L., Frandsen, P. B., Ware, J., and Wiegmann, B. (2016). Advances using molecular data in insect systematics. Current Opinion in Insect Science 18, 40–47.
Advances using molecular data in insect systematics.Crossref | GoogleScholarGoogle Scholar | 27939709PubMed |

Kück, P., Hita Garcia, F., Misof, B., and Meusemann, K. (2011). Improved phylogenetic analyses corroborate a plausible position of Martialis heureka in the ant tree of life. PLoS One 6, e21031.
Improved phylogenetic analyses corroborate a plausible position of Martialis heureka in the ant tree of life.Crossref | GoogleScholarGoogle Scholar | 21731644PubMed |

Kugler, J. (1987). The Leptanillinae (Hymenoptera: Formicidae) of Israel and a description of a new species from India. Israel Journal of Entomology 20, 45–57.

Kutter, H. (1948). Beitrag zur Kenntnis der Leptanillinae (Hym. Formicidae): eine neue Ameisengattung aus Süd-Indien. Mitteilungen der Schweizerische Entomologische Gesellschaft 11, 286–295.

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Leong, C.-M., Yamane, S., and Guénard, B. (2018). Lost in the city: discovery of the rare ant genus Leptanilla (Hymenoptera: Formicidae) in Macau with description of Leptanilla macauensis sp. nov. Asian Myrmecology 10, e010001.
Lost in the city: discovery of the rare ant genus Leptanilla (Hymenoptera: Formicidae) in Macau with description of Leptanilla macauensis sp. nov.Crossref | GoogleScholarGoogle Scholar |

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 12116640PubMed |

López, F., Martinez, M. D., and Barandica, J. M. (1994). Four new species of the genus Leptanilla (Hymenoptera: Formicidae) from Spain – relationships to other species and ecological issues. Sociobiology 24, 179–212.

Man, P., Ran, H., Chen, Z., and Xu, Z. (2017). The northernmost record of Leptanillinae in China with description of Protanilla beijingensis sp. nov. (Hymenoptera: Formicidae). Asian Myrmecology 9, e009008.
The northernmost record of Leptanillinae in China with description of Protanilla beijingensis sp. nov. (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Masuko, K. (1990). Behavior and ecology of the enigmatic ant Leptanilla japonica Baroni Urbani (Hymenoptera: Formicidae: Leptanillinae). Insectes Sociaux 37, 31–57.
Behavior and ecology of the enigmatic ant Leptanilla japonica Baroni Urbani (Hymenoptera: Formicidae: Leptanillinae).Crossref | GoogleScholarGoogle Scholar |

Matzke, N. J., and Wright, A. (2016). Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biology Letters 12, 20160328.
Inferring node dates from tip dates in fossil Canidae: the importance of tree priors.Crossref | GoogleScholarGoogle Scholar | 27512133PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway. In ‘Proceedings, the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA.) 10.1109/GCE.2010.5676129

Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., and Pierce, N. E. (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104.
Phylogeny of the ants: diversification in the age of angiosperms.Crossref | GoogleScholarGoogle Scholar | 16601190PubMed |

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Niehuis, O., Hartig, G., Grath, S., Pohl, H., Lehmann, J., Tafer, H., Donath, A., Krauss, V., Eisenhardt, C., Hertel, J., Petersen, M., Mayer, C., Meusemann, K., Peters, R. S., Stadler, P. F., Beutel, R. G., Bornberg-Bauer, E., McKenna, D. D., and Misof, B. (2012). Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology 22, 1309–1313.
Genomic and morphological evidence converge to resolve the enigma of Strepsiptera.Crossref | GoogleScholarGoogle Scholar | 22704986PubMed |

O’Reilly, J. E., dos Reis, M., and Donoghue, P. C. J. (2015). Dating tips for divergence-time estimation. Trends in Genetics 31, 637–650.
Dating tips for divergence-time estimation.Crossref | GoogleScholarGoogle Scholar | 26439502PubMed |

Ogata, K., Terayama, M., and Masuko, K. (1995). The ant genus Leptanilla: discovery of the worker-associated male of Leptanilla japonica, and a description of a new species from Taiwan (Hymenoptera: Formicidae: Leptanillinae). Systematic Entomology 20, 27–34.
The ant genus Leptanilla: discovery of the worker-associated male of Leptanilla japonica, and a description of a new species from Taiwan (Hymenoptera: Formicidae: Leptanillinae).Crossref | GoogleScholarGoogle Scholar |

Patterson, C. (1982). Morphological characters and homology. In ‘Problems of Phylogenetic Reconstruction’. (Eds K. A. Joysey, and A. E. Friday.) pp. 21–74. (Academic Press: London, UK.)

Petersen, B. (1968). Some novelties in presumed males of Leptanillinae (Hym., Formicidae). Entomologiske Meddelelser 36, 577–598.

Pleijel, P. (1995). On character coding for phylogeny reconstruction. Cladistics 11, 309–315.
On character coding for phylogeny reconstruction.Crossref | GoogleScholarGoogle Scholar |

Rabeling, C., Brown, J., and Verhaagh, M. (2008). Newly discovered sister lineage sheds light on early ant evolution. Proceedings of the National Academy of Sciences of the United States of America 105, 14913–14917.
Newly discovered sister lineage sheds light on early ant evolution.Crossref | GoogleScholarGoogle Scholar | 18794530PubMed |

Rambaut, A., Drummond, A. J., Xie, D., Baele, D., and Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Robertson, H. G. (2000). Formicidae (Hymenoptera: Vespoidea). In ‘Dâures Biodiversity of the Brandberg Massif, Namibia’. (Eds A. H. Kirk-Spriggs, and E. Marais.) Cimbabesia Memoir 9, pp. 371–382. (National Museum of Namibia: Windhoek, Namibia.)

Robertson, J. A., and Moore, W. (2017). Phylogeny of Paussus L. (Carabidae: Paussinae): unravelling morphological convergence associated with myrmecophilous life histories. Systematic Entomology 42, 134–170.
Phylogeny of Paussus L. (Carabidae: Paussinae): unravelling morphological convergence associated with myrmecophilous life histories.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P. (2012). A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61, 973–999.
A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 22723471PubMed |

Sánchez, N., Yamasaki, H., Pardos, F., Sørensen, M. V., and Martínez, A. (2016). Morphology disentangles the systematics of a ubiquitous but elusive meiofaunal group (Kinorhyncha: Pycnophyidae). Cladistics 32, 479–505.
Morphology disentangles the systematics of a ubiquitous but elusive meiofaunal group (Kinorhyncha: Pycnophyidae).Crossref | GoogleScholarGoogle Scholar |

Scupola, A., and Ballarin, R. (2009). The genus Leptanilla Emery, 1870 in Sicily (Hymenoptera: Formicidae). Myrmecological News 12, 129–132.

Strong, E. E., and Lipscomb, D. (1999). Character coding and inapplicable data. Cladistics 15, 363–371.
Character coding and inapplicable data.Crossref | GoogleScholarGoogle Scholar |

Taylor, R. W. (1965). A monographic revision of the rare tropicopolitan ant genus Probolomyrmex Mayr (Hymenoptera: Formicidae). Transactions of the Royal Entomological Society of London 117, 345–365.
A monographic revision of the rare tropicopolitan ant genus Probolomyrmex Mayr (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Ward, P. S., and Fisher, B. L. (2016). Tales of dracula ants: the evolutionary history of the ant subfamily Amblyoponinae (Hymenoptera: Formicidae). Systematic Entomology 41, 683–693.
Tales of dracula ants: the evolutionary history of the ant subfamily Amblyoponinae (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Ward, P. S., and Sumnicht, T. P. (2012). Molecular and morphological evidence for three sympatric species of Leptanilla (Hymenoptera: Formicidae). Myrmecological News 17, 5–11.

Ward, P. S., Brady, S. G., Fisher, B. L., and Schultz, T. R. (2010). Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Systematic Biology 59, 342–362.
Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference.Crossref | GoogleScholarGoogle Scholar | 20525640PubMed |

Wheeler, G. C., and Wheeler, E. W. (1930). Two new ants from Java. Psyche 37, 193–201.
Two new ants from Java.Crossref | GoogleScholarGoogle Scholar |

Wipfler, B., Letsch, H., Frandsen, P. B., Kapli, P., Mayer, C., Buckley, T. R., Donath, A., Edgerly-Rooks, A. S., Fujita, M., Liu, S., Machida, R., Mashimo, Y., Misof, B., Niehuis, O., Peters, R. S., Petersen, M., Podsiadlowski, L., Schütte, K., Shimizu, S., Uchifune, T., Wilbrandt, J., Yan, E., Zhou, X., and Simon, S. (2019). Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America 116, 3024–3029.
Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects.Crossref | GoogleScholarGoogle Scholar | 30642969PubMed |

Wong, M. K. L., and Guénard, B. (2016). Leptanilla hypodracos sp. n., a new species of the cryptic ant genus Leptanilla (Hymenoptera, Formicidae) from Singapore, with new distribution data and an updated key to oriental Leptanilla species. ZooKeys 551, 129–144.
Leptanilla hypodracos sp. n., a new species of the cryptic ant genus Leptanilla (Hymenoptera, Formicidae) from Singapore, with new distribution data and an updated key to oriental Leptanilla species.Crossref | GoogleScholarGoogle Scholar |

Yamada, A., Nguyen, D. D., and Eguchi, K. (2020). Unveiling the morphology of the Oriental rare monotypic ant genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymenoptera: Formicidae: Leptanillinae) and its evolutionary implications, with first descriptions of the male, larva, tentorium, and sting apparatus. Myrmecological News 30, 27–52.

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Yoder, M. J., Miko, I., Seltmann, K. C., Bertone, M. A., and Deans, A. R. (2010). A gross anatomy ontology for Hymenoptera. PLoS One 5, e15991.
A gross anatomy ontology for Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 21209921PubMed |