Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE (Open Access)

Integrative taxonomy of the new millipede genus Coxobolellus, gen. nov. (Diplopoda : Spirobolida : Pseudospirobolellidae), with descriptions of ten new species

Piyatida Pimvichai https://orcid.org/0000-0001-9765-821X A F , Henrik Enghoff B , Somsak Panha C and Thierry Backeljau D E
+ Author Affiliations
- Author Affiliations

A Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.

B Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.

C Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

D Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium.

E Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.

F Corresponding author. Email: piyatida.p@msu.ac.th

Invertebrate Systematics 34(6) 591-617 https://doi.org/10.1071/IS20031
Submitted: 16 April 2020  Accepted: 6 May 2020   Published: 14 August 2020

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

Pseudospirobolellidae is a poorly known family of spirobolidan millipedes with only two genera and five described species. Yet, the descriptive taxonomy and molecular systematics of this group have been largely neglected. Therefore, the present work presents an integrative taxonomic study of new pseudospirobolellid taxa in Thailand. To this end, two mitochondrial gene fragments (COI and 16S rRNA) combined with morphological characters were used to define the genus Coxobolellus, gen. nov. with 10 new species, viz. C. albiceps, sp. nov., C. compactogonus, sp. nov., C. fuscus, sp. nov., C. nodosus, sp. nov., C. serratus, sp. nov., C. simplex, sp. nov., C. tenebris, sp. nov., C. tigris, sp. nov., C. transversalis, sp. nov. and C. valvatus, sp. nov. The interspecific COI sequence divergences among the new species ranged from 6 to 15%. The intergeneric COI sequence divergence between species of Coxobolellus, gen. nov., Benoitolus birgitae and Pseudospirobolellus sp. ranged from 20 to 23%. Three major morphological differences separate Coxobolellus, gen. nov. from Benoitolus and Pseudospirobolellus, namely (1) the protruding process on the 3rd (and 4th) coxae on male legs, (2) the posterior gonopod telopodite divided into two parts, and (3) a conspicuous opening pore at the mesal margin at the end of the coxal part of the posterior gonopod. Thus, the new genus is well supported by both mtDNA and morphological evidence, while the delimitation of the 10 new species is supported by the congruence between mtDNA and morphological data. Yet, with respect to the relationships of Benoitolus birgitae, morphological data suggest a similarity with Coxobolellus, gen. nov. and Pseudospirobolellus, whereas mtDNA data place this species in the Pachybolidae. Further phylogenetic analyses are needed to explore this apparent incongruence and test the monophyly of Pseudospirobolellidae.

Additional keywords: mitochondrial DNA, new genus, phylogeny, species delineation.


References

Attems, C. (1936). Diplopoda of India. Memoirs of the Indian Museum 11, 133–323.

Attems, C. (1953). Myriopoden von Indochina. Expedition von Dr C. Dawydoff (1938–1939). Mémoires du Muséum National d’Histoire Naturelle. Série A, Zoologie 5, 133–230.

Carl, J. (1912). Die Diplopoden-Fauna von Celebes. Revue Suisse de Zoologie 20, 73–206.
Die Diplopoden-Fauna von Celebes.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Enghoff, H., Golovatch, S., Short, M., Stoev, P., and Wesener, T. (2015). Diplopoda – taxonomic overview. In ‘The Myriapoda 2. Treatise on Zoology – Anatomy, Taxonomy, Biology’. (Ed. A. Minelli.) pp. 363–453. (Brill: Leiden, Netherlands.)

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hillis, D., and Bull, J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Hoffman, R. L. (1981). Studies on spiroboloid millipeds. XIV. Notes on the family Pseudospirobolellidae, and the description of a new genus and species from Thailand. Steenstrupia 7, 181–190.

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Jeekel, C. A. W. (2001). A bibliographic catalogue of the Spirobolida of the Oriental and Australian Regions (Diplopoda). Myriapod Memoranda 4, 3–104.

Kekkonen, M., Mutanen, M., Kaila, L., Nieminen, M., and Hebert, P. D. N. (2015). Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS One 10, e0122481.
Delineating species with DNA barcodes: a case of taxon dependent method performance in moths.Crossref | GoogleScholarGoogle Scholar | 25849083PubMed |

Kessing, B., Croom, H., Martin, A., McIntosh, C., McMillan, W. O., and Palumbi, S. (2004). PCR primers. In ‘The Simple Fool’s Guide to PCR’. Version 1.0, pp. 17–18. (University of Hawaii, Department of Zoology: Honolulu, HI, USA.)

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: molecular evolutionary genetics analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar | 29722887PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Likhitrakarn, N., Golovatch, S. I., and Panha, S. (2011). Revision of the Southeast Asian millipede genus Orthomorpha Bollman, 1893, with the proposal of a new genus (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 131, 1–161.
Revision of the Southeast Asian millipede genus Orthomorpha Bollman, 1893, with the proposal of a new genus (Diplopoda, Polydesmida, Paradoxosomatidae).Crossref | GoogleScholarGoogle Scholar |

Mauriès, J.-P. (1980). Contributions à l’étude de la faune terrestre des îles granitiques de l’archipel des Séchelles (Mission P.L.G. Benoit – J.J. Van Mol 1972). Myriapoda – Diplopoda. Revue de Zoologie Africaine 94, 138–168.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number: 11705685, pp. 1–8. (IEEE.) 10.1109/GCE.2010.5676129

Mwabvu, T., Lamb, J., Slotow, R., Hamer, R. M., and Barraclough, D. (2015). Do cytochrome c oxidase 1 gene sequences differentiate species of spirostreptid millipedes (Diplopoda: Spirostreptida: Spirostreptidae)? African Invertebrates 56, 651–661.
Do cytochrome c oxidase 1 gene sequences differentiate species of spirostreptid millipedes (Diplopoda: Spirostreptida: Spirostreptidae)?Crossref | GoogleScholarGoogle Scholar |

Pimvichai, P., Enghoff, H., and Panha, S. (2014). Molecular phylogeny of the Thyropygus allevatus group of giant millipedes and some closely related groups. Molecular Phylogenetics and Evolution 71, 170–183.
Molecular phylogeny of the Thyropygus allevatus group of giant millipedes and some closely related groups.Crossref | GoogleScholarGoogle Scholar | 24269316PubMed |

Pimvichai, P., Enghoff, H., and Panha, S. (2016). A revision of the Thyropygus allevatus group. Part V: Nine new species of the extended opinatus subgroup, based on morphological and DNA sequence data (Diplopoda: Spirostreptida: Harpagophoridae). European Journal of Taxonomy 199, 1–37.
A revision of the Thyropygus allevatus group. Part V: Nine new species of the extended opinatus subgroup, based on morphological and DNA sequence data (Diplopoda: Spirostreptida: Harpagophoridae).Crossref | GoogleScholarGoogle Scholar |

Pimvichai, P., Enghoff, H., Panha, S., and Backeljau, T. (2018). Morphological and mitochondrial DNA data reshuffle the taxonomy of the genera Atopochetus Attems, Litostrophus Chamberlin and Tonkinbolus Verhoeff (Diplopoda: Spirobolida: Pachybolidae), with descriptions of nine new species. Invertebrate Systematics 32, 159–195.
Morphological and mitochondrial DNA data reshuffle the taxonomy of the genera Atopochetus Attems, Litostrophus Chamberlin and Tonkinbolus Verhoeff (Diplopoda: Spirobolida: Pachybolidae), with descriptions of nine new species.Crossref | GoogleScholarGoogle Scholar |

Pitz, K. M., and Sierwald, P. (2010). Phylogeny of the millipede order Spirobolida (Arthropoda: Diplopoda: Helminthomorpha). Cladistics 26, 497–525.
Phylogeny of the millipede order Spirobolida (Arthropoda: Diplopoda: Helminthomorpha).Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Reip, H. S., and Wesener, T. (2018). Intraspecific variation and phylogeography of the millipede model organism, the black pill millipede Glomeris marginata (Villers, 1789) (Diplopoda, Glomerida, Glomeridae). ZooKeys 741, 93–131.
Intraspecific variation and phylogeography of the millipede model organism, the black pill millipede Glomeris marginata (Villers, 1789) (Diplopoda, Glomerida, Glomeridae).Crossref | GoogleScholarGoogle Scholar | 30872937PubMed |

Shiels, D. R., Hurlbut, D. L., Lichtenwald, S. K., and Monfils, A. K. (2014). Monophyly and phylogeny of Schoenoplectus and Schoenoplectiella (Cyperaceae): evidence from chloroplast and nuclear DNA sequences. Systematic Botany 39, 132–144.
Monophyly and phylogeny of Schoenoplectus and Schoenoplectiella (Cyperaceae): evidence from chloroplast and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Spelda, J., Reip, H. S., Oliveira–Biener, U., and Melzer, R. R. (2011). Barcoding Fauna Bavarica: Myriapoda – a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda). ZooKeys 156, 123–139.
Barcoding Fauna Bavarica: Myriapoda – a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda).Crossref | GoogleScholarGoogle Scholar |

Srisonchai, R., Enghoff, H., Likhitrakarn, N., and Panha, S. (2018a). A revision of dragon millipedes I: genus Desmoxytes Chamberlin, 1923, with the description of eight new species (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 761, 1–177.
A revision of dragon millipedes I: genus Desmoxytes Chamberlin, 1923, with the description of eight new species (Diplopoda, Polydesmida, Paradoxosomatidae).Crossref | GoogleScholarGoogle Scholar |

Srisonchai, R., Likhitrakarn, N., Enghoff, H., and Panha, S. (2018b). A revision of dragon millipede IV: the new genus Spinaxytes, with the description of nine new species (Diplopoda, Polydesmida, Paradoxosomatidae). ZooKeys 797, 19–69.
A revision of dragon millipede IV: the new genus Spinaxytes, with the description of nine new species (Diplopoda, Polydesmida, Paradoxosomatidae).Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |

Xia, X. (2018). DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution 35, 1550–1552.
DAMBE7: new and improved tools for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar | 29669107PubMed |