Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A happy family: systematic revision of the endemic Theridion spiders (Araneae, Theridiidae) of the Hawaiian Islands

Adrià Bellvert https://orcid.org/0000-0003-1592-3978 A C , Rosemary G. Gillespie B and Miquel A. Arnedo A B
+ Author Affiliations
- Author Affiliations

A Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain.

B Department of Environmental Science, Policy, and Management, 221 Wellman Hall, University of California, Berkeley, CA 94720-3114, USA.

C Corresponding author. Email: abellvertba@gmail.com

Invertebrate Systematics 35(1) 1-58 https://doi.org/10.1071/IS20001
Submitted: 17 January 2020  Accepted: 18 June 2020   Published: 5 January 2021

Abstract

Since the description in 1900 of the iconic Happy Face spider, Theridion grallator, Simon, along with nine relatives, the Theridion fauna of the Hawaiian Islands has remained unstudied. Here, we present a systematic revision of the Hawaiian Theridion, which includes the examination of abundant material collected during the last 50 years, with scanning of the genitalia of several species using SEM techniques, and a cladistic analysis based on 22 morphological characters, to provide a first hypothesis of the phylogenetic structure of the group. We describe eight new species, namely T. ariel, sp. nov., T. caliban, sp. nov., T. ceres, sp. nov., T. ferdinand, sp. nov., T. juno, sp. nov., T. miranda, sp. nov., T. prospero, sp. nov. and T. sycorax, sp. nov. Additionally, we provide new diagnoses for former species and illustrate and describe for the first time the male of T. kauaiense Simon, 1900 and the female of T. praetextum Simon, 1900. We further propose that T. campestratum Simon, 1900 is a junior synonym of T. melinum Simon, 1900 and T. praetextum concolor Simon, 1900 is a junior synonym of T. praetextum. Finally, we provide updated information on the distribution of the species. Most species are easily diagnosed based on the male and female genitalia, but we also reveal the existence of somatic characters that differ among species, such as the body size and the shape and size of the chelicerae, which may have played a role in the diversification and coexistence of some of the species. The preferred cladogram from the cladistic analysis, although compatible with a progression rule, also suggests a complex pattern of multiple back and forward colonisations, albeit most of the clades are poorly supported.


References

Agnarsson, I. (2004). Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zoological Journal of the Linnean Society 141, 447–626.
Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Agnarsson, I. (2006). Asymmetric female genitalia and other remarkable morphology in a new genus of cobweb spiders (Theridiidae, Araneae) from Madagascar. Biological Journal of the Linnean Society. Linnean Society of London 87, 211–232.
Asymmetric female genitalia and other remarkable morphology in a new genus of cobweb spiders (Theridiidae, Araneae) from Madagascar.Crossref | GoogleScholarGoogle Scholar |

Agnarsson, I., Coddington, J. A., and Knoflach, B. (2007). Morphology and evolution of cobweb spider male genitalia (Araneae, Theridiidae). The Journal of Arachnology 35, 334–395.
Morphology and evolution of cobweb spider male genitalia (Araneae, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Arnedo, M. A., and Gillespie, R. G. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószyński, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution 41, 472–495.
Species diversification patterns in the Polynesian jumping spider genus Havaika Prószyński, 2001 (Araneae, Salticidae).Crossref | GoogleScholarGoogle Scholar | 16837219PubMed |

Arnedo, M. A., Agnarsson, I., and Gillespie, R. G. (2007). Molecular insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. Zoologica Scripta 36, 337–352.
Molecular insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna.Crossref | GoogleScholarGoogle Scholar |

Avilés, L., and Tufino, P. (1998). Colony size and individual fitness in the social spider Anelosimus eximius. American Naturalist 152, 403–418.
Colony size and individual fitness in the social spider Anelosimus eximius.Crossref | GoogleScholarGoogle Scholar |

Bennett, G. M., and O’Grady, P. M. (2013). Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne). Journal of Biogeography 40, 1512–1523.
Historical biogeography and ecological opportunity in the adaptive radiation of native Hawaiian leafhoppers (Cicadellidae: Nesophrosyne).Crossref | GoogleScholarGoogle Scholar |

Bess, E. C., Catanach, T. A., and Johnson, K. P. (2014). The importance of molecular dating analyses for inferring Hawaiian biogeographical history: a case study with bark lice (Psocidae: Ptycta). Journal of Biogeography 41, 158–167.
The importance of molecular dating analyses for inferring Hawaiian biogeographical history: a case study with bark lice (Psocidae: Ptycta).Crossref | GoogleScholarGoogle Scholar |

Blackledge, T. A., and Gillespie, R. G. (2004). Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders. Proceedings of the National Academy of Sciences of the United States of America 101, 16228–16233.
Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders.Crossref | GoogleScholarGoogle Scholar | 15520386PubMed |

Cardoso, P., Arnedo, M. A., Triantis, K. A., and Borges, P. A. V. (2010). Drivers of diversity in Macaronesian spiders and the role of species extinctions. Journal of Biogeography 37, 1034–1046.
Drivers of diversity in Macaronesian spiders and the role of species extinctions.Crossref | GoogleScholarGoogle Scholar |

Carlquist, S. J. (1974). ‘Island Biology.’ (Columbia University Press: New York, NY, USA.)

Carson, H. L., and Clague, D. A. (1995). Geology and biogeography of the Hawaiian Islands. In ‘Hawaiian Biogeography: Evolution on a Hotspot Archipelago’. (Eds W. L. Wagner, and V. A. Funk.) pp. 14–29. (Smithsonian Institution Press: Washington, DC, USA.)

Comstock, J. H. (1940). ‘The Spider Book.’ (Ed. W. J. Gertsch.) (Comstock Publishing Company: New York, NY, USA)

Cotoras, D. D., Bi, K., Brewer, M. S., Lindberg, D. R., Prost, S., and Gillespie, R. G. (2018). Co-occurrence of ecologically similar species of Hawaiian spiders reveals critical early phase of adaptive radiation. BMC Evolutionary Biology 18, 100.
Co-occurrence of ecologically similar species of Hawaiian spiders reveals critical early phase of adaptive radiation.Crossref | GoogleScholarGoogle Scholar | 29921226PubMed |

Cowie, R. H., and Holland, B. S. (2008). Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3363–3376.
Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar | 18765363PubMed |

Craven, D., Knight, T. M., Barton, K. E., Bialic-Murphy, L., and Chase, J. M. (2019). Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proceedings of the National Academy of Sciences of the United States of America 116, 16436–16441.
Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago.Crossref | GoogleScholarGoogle Scholar | 31358626PubMed |

Croucher, P. J. P., Oxford, G. S., Lam, A., Mody, N., and Gillespie, R. G. (2012). Colonization history and population genetics of the color-polymorphic Hawaiian happy-face spider Theridion grallator (Araneae, Theridiidae). Evolution 66, 2815–2833.
Colonization history and population genetics of the color-polymorphic Hawaiian happy-face spider Theridion grallator (Araneae, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Croucher, P. J. P., Brewer, M. S., Winchell, C. J., Oxford, G. S., and Gillespie, R. G. (2013). De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics 14, 862.
De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes.Crossref | GoogleScholarGoogle Scholar |

Cryan, J. R., Liebherr, J. K., Fetzner, J. W., and Whiting, M. F. (2001). Evaluation of relationships within the endemic Hawaiian Platynini (Coleoptera: Carabidae) based on molecular and morphological evidence. Molecular Phylogenetics and Evolution 21, 72–85.
Evaluation of relationships within the endemic Hawaiian Platynini (Coleoptera: Carabidae) based on molecular and morphological evidence.Crossref | GoogleScholarGoogle Scholar | 11603938PubMed |

de Alencar, L. R. V., Martins, M., Burin, G., and Quental, T. B. (2017). Arboreality constrains morphological evolution but not species diversification in vipers. Proceedings of the Royal Society – B. Biological Sciences 284, 20171775.
Arboreality constrains morphological evolution but not species diversification in vipers.Crossref | GoogleScholarGoogle Scholar |

Eberhard, W. G., and Huber, B. A. (2010). Spider genitalia: precise manoeuvres with a numb structure in a complex lock. In ‘The Evolution of Primary Sexual Characters in Animals’. (Eds J. Leonard and A. Cordoba-Aguilar.) pp. 249-284. (Oxford University Press: Oxford, UK.)

Eberhard, W. G., Agnarsson, I., and Levi, H. W. (2008). Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. Systematics and Biodiversity 6, 415–475.
Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order.Crossref | GoogleScholarGoogle Scholar |

Garb, J. E., and Gillespie, R. G. (2009). Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data. Molecular Ecology 18, 1746–1764.
Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data.Crossref | GoogleScholarGoogle Scholar | 19302468PubMed |

Gillespie, R. G. (1989). Diet-induced color change in the Hawaiian happy-face spider Theridion grallator (Araneae, Theridiidae). The Journal of Arachnology 17, 171–177.
Diet-induced color change in the Hawaiian happy-face spider Theridion grallator (Araneae, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. G. (2003). Hawaiian spiders of the genus Tetragnatha (Araneae, Tetragnathidae): V. Elongate web-builders from Oahu. The Journal of Arachnology 31, 8–19.
Hawaiian spiders of the genus Tetragnatha (Araneae, Tetragnathidae): V. Elongate web-builders from Oahu.Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. (2004). Community assembly through adaptive radiation in Hawaiian spiders. Science 303, 356–359.
Community assembly through adaptive radiation in Hawaiian spiders.Crossref | GoogleScholarGoogle Scholar | 14726588PubMed |

Gillespie, R. G. (2005). Geographical context of speciation in a radiation of Hawaiian Tetragnatha spiders (Araneae, Tetragnathidae). The Journal of Arachnology 33, 313–322.
Geographical context of speciation in a radiation of Hawaiian Tetragnatha spiders (Araneae, Tetragnathidae).Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. G. (2016). Island time and the interplay between ecology and evolution in species diversification. Evolutionary Applications 9, 53–73.
Island time and the interplay between ecology and evolution in species diversification.Crossref | GoogleScholarGoogle Scholar | 27087839PubMed |

Gillespie, R. G., and Oxford, G. S. (1998). Selection on the color polymorphism in Hawaiian happy-face spiders: evidence from genetic structure and temporal fluctuations. Evolution 52, 775–783.
Selection on the color polymorphism in Hawaiian happy-face spiders: evidence from genetic structure and temporal fluctuations.Crossref | GoogleScholarGoogle Scholar | 28565234PubMed |

Gillespie, R. G., and Roderick, G. K. (2002). Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology 47, 595–632.
Arthropods on islands: colonization, speciation, and conservation.Crossref | GoogleScholarGoogle Scholar | 11729086PubMed |

Gillespie, R. G., and Tabashnik, B. E. (1989). What makes a happy face? Determinants of colour pattern in the Hawaiian happy face spider Theridion grallator (Araneae, Theridiidae). Heredity 62, 355–363.
What makes a happy face? Determinants of colour pattern in the Hawaiian happy face spider Theridion grallator (Araneae, Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. G., and Tabashnik, B. E. (1990). Maintaining a happy face: stable colour polymorphism in the spider Theiridion grallator (Araneae, theridiidae). Heredity 65, 67–74.
Maintaining a happy face: stable colour polymorphism in the spider Theiridion grallator (Araneae, theridiidae).Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. G., Benjamin, S. P., Brewer, M. S., Rivera, M. A. J., and Roderick, G. K. (2018). Repeated diversification of ecomorphs in Hawaiian stick spiders. Current Biology 28, 941–947.
Repeated diversification of ecomorphs in Hawaiian stick spiders.Crossref | GoogleScholarGoogle Scholar | 29526585PubMed |

Gillespie, R. G., Bennett, G. M., De Meester, L., Feder, J. L., Fleischer, R. C., Harmon, L. J., Hendry, A. P., Knope, M. L., Mallet, J., Martin, C., Parent, C. E., Patton, A. H., Pfennig, K. S., Rubinoff, D., Schluter, D., Seehausen, O., Shaw, K. L., Stacy, E., Stervander, M., Stroud, J. T., Wagner, C., and Wogan, G. O. U. (2020). Comparing adaptive radiations across space, time, and taxa. The Journal of Heredity 111, 1–20.
Comparing adaptive radiations across space, time, and taxa.Crossref | GoogleScholarGoogle Scholar | 31958131PubMed |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Mattoni, C. I., and Quinteros, A. S. (2006). Continuous characters analyzed as such. Cladistics 22, 589–601.
Continuous characters analyzed as such.Crossref | GoogleScholarGoogle Scholar |

Grant, P. R. (Ed.) (1998). ‘Evolution on Islands.’ (Oxford University Press: New York, USA and London, UK.)

Griswold, C. E., Coddington, J. A., Hormiga, G., and Scharff, N. (1998). Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal of the Linnean Society 123, 1–99.
Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea).Crossref | GoogleScholarGoogle Scholar |

Hadfield, M. G., and Miller, S. E. (1989). Demographic studies on Hawaii’s endangered tree snails: Partulina proxima. Pacific Science 43, 1–16.

Holland, B. S., and Hadfield, M. G. (2002). Islands within an island: phylogeography and conservation genetics of the endangered Hawaiian tree snail Achatinella mustelina. Molecular Ecology 11, 365–375.
Islands within an island: phylogeography and conservation genetics of the endangered Hawaiian tree snail Achatinella mustelina.Crossref | GoogleScholarGoogle Scholar | 11918776PubMed |

Hormiga, G., Arnedo, M., and Gillespie, R. G. (2003). Speciation on a conveyor belt: sequential colonization of the Hawaiian islands by Orsonwelles spiders (Araneae, Linyphiidae). Systematic Biology 52, 70–88.
Speciation on a conveyor belt: sequential colonization of the Hawaiian islands by Orsonwelles spiders (Araneae, Linyphiidae).Crossref | GoogleScholarGoogle Scholar | 12554442PubMed |

Kahle, D., and Wickham, H. (2013). ggmap: spatial visualization with ggplot2. The R Journal 5, 144–161.
ggmap: spatial visualization with ggplot2.Crossref | GoogleScholarGoogle Scholar |

Kennedy, S., Lim, J. Y., Clavel, J., Krehenwinkel, H., and Gillespie, R. G. (2019). Spider webs, stable isotopes and molecular gut content analysis: multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders. Functional Ecology 33, 1722–1733.
Spider webs, stable isotopes and molecular gut content analysis: multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders.Crossref | GoogleScholarGoogle Scholar |

Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M., and Fleischer, R. C. (2011). Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Current Biology 21, 1838–1844.
Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers.Crossref | GoogleScholarGoogle Scholar |

Levi, H. W. (1957). The spider genera Enoplognatha, Theridion, and Paidisca in america north of Mexico. Bulletin of the American Museum of Natural History 112, 1–124.

Levi, H. W. (1959). The spider genera Achaearanea, Theridion and Sphyrotinus from Mexico, Central America and the West Indies (Araneae, Theridiidae). Bulletin of the Museum of Comparative Zoology 121, 57–163.

Lim, J. Y., and Marshall, C. R. (2017). The true tempo of evolutionary radiation and decline revealed on the Hawaiian archipelago. Nature 543, 710–713.
The true tempo of evolutionary radiation and decline revealed on the Hawaiian archipelago.Crossref | GoogleScholarGoogle Scholar | 28297717PubMed |

Liu, J., May-Collado, L. J., Pekár, S., and Agnarsson, I. (2016). A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Molecular Phylogenetics and Evolution 94, 658–675.
A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae).Crossref | GoogleScholarGoogle Scholar | 26454029PubMed |

Medeiros, M. J., and Gillespie, R. G. (2011). Biogeography and the evolution of flightlessness in a radiation of Hawaiian moths (Xyloryctidae: Thyrocopa). Journal of Biogeography 38, 101–111.
Biogeography and the evolution of flightlessness in a radiation of Hawaiian moths (Xyloryctidae: Thyrocopa).Crossref | GoogleScholarGoogle Scholar |

Mendelson, T. C., and Shaw, K. L. (2005). Sexual behaviour: rapid speciation in an anthropod. Nature 433, 375–376.
Sexual behaviour: rapid speciation in an anthropod.Crossref | GoogleScholarGoogle Scholar | 15674280PubMed |

O’Grady, P., and DeSalle, R. (2008). Out of Hawaii: the origin and biogeography of the genus Scaptomyza (Diptera: Drosophilidae). Biology Letters 4, 195–199.
Out of Hawaii: the origin and biogeography of the genus Scaptomyza (Diptera: Drosophilidae).Crossref | GoogleScholarGoogle Scholar | 18296276PubMed |

Oxford, G. S., and Gillespie, R. G. (1996a). Genetics of a colour polymorphism in the Hawaiian happy face spider, Theridion grallator (Araneae: Theridiidae) from Greater Maui. Heredity 76, 238–248.
Genetics of a colour polymorphism in the Hawaiian happy face spider, Theridion grallator (Araneae: Theridiidae) from Greater Maui.Crossref | GoogleScholarGoogle Scholar |

Oxford, G. S., and Gillespie, R. G. (1996b). Quantum shifts in the genetic control of a colour polymorphism in Theridion grallator (Araneae: Theridiidae), the Hawaiian happy-face spider. Heredity 76, 249–256.
Quantum shifts in the genetic control of a colour polymorphism in Theridion grallator (Araneae: Theridiidae), the Hawaiian happy-face spider.Crossref | GoogleScholarGoogle Scholar |

Oxford, G. S., and Gillespie, R. G. (1996c). The effects of genetic background on the island-specific control of a colour polymorphism in the Hawaiian happy face spider, Theridion grallator (Araneae: Theridiidae). Heredity 76, 257–266.
The effects of genetic background on the island-specific control of a colour polymorphism in the Hawaiian happy face spider, Theridion grallator (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Oxford, G. S., and Gillespie, R. G. (1998). Evolution and ecology of spider coloration. Annual Review of Entomology 43, 619–643.
Evolution and ecology of spider coloration.Crossref | GoogleScholarGoogle Scholar | 15012400PubMed |

Parsons, Y. M., and Shaw, K. L. (2001). Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Molecular Ecology 10, 1765–1772.
Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism.Crossref | GoogleScholarGoogle Scholar | 11472543PubMed |

Perkins, R. C. L. (1913). Introduction (to Fauna Hawaiiensis). In ‘Fauna Hawaiiensis: Being the Land-fauna of the Hawaiian Islands’. (Ed. D. Sharp.) Vol. 1, pp. xv–ccxxviii. (Cambridge University Press: Cambridge, UK.)

Poland, M. P., Takahashi, J., Landowski, C. M., Clague, D. A., and Sherrod, D. R. (2014). Characteristics of Hawaiian volcanoes. Chapter 3: Growth and degradation of Hawaiian volcanoes. US Geological Survey Professional Paper 1801, US Geological Survey. https://doi.org/10.3133/pp1801

Reding, D. M., Foster, J. T., James, H. F., Pratt, H. D., and Fleischer, R. C. (2009). Convergent evolution of ‘creepers’ in the Hawaiian honeycreeper radiation. Biology Letters 5, 221–224.
Convergent evolution of ‘creepers’ in the Hawaiian honeycreeper radiation.Crossref | GoogleScholarGoogle Scholar | 19087923PubMed |

Rivera, M. A. J., Howarth, F. G., Taiti, S., and Roderick, G. K. (2002). Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25, 1–9.
Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts?Crossref | GoogleScholarGoogle Scholar |

Santamaria, C. A., Mateos, M., Taiti, S., DeWitt, T. J., and Hurtado, L. A. (2013). A complex evolutionary history in a remote archipelago: phylogeography and morphometrics of the Hawaiian endemic Ligia isopods. PLoS One 8, e85199.
A complex evolutionary history in a remote archipelago: phylogeography and morphometrics of the Hawaiian endemic Ligia isopods.Crossref | GoogleScholarGoogle Scholar | 24386463PubMed |

Shapiro, L. H., Strazanac, J. S., and Roderick, G. K. (2006). Molecular phylogeny of Banza (Orthoptera: Tettigoniidae), the endemic katydids of the Hawaiian archipelago. Molecular Phylogenetics and Evolution 41, 53–63.
Molecular phylogeny of Banza (Orthoptera: Tettigoniidae), the endemic katydids of the Hawaiian archipelago.Crossref | GoogleScholarGoogle Scholar | 16781170PubMed |

Shaw, K. (2002). Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the United States of America 99, 16122–16127.
Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets.Crossref | GoogleScholarGoogle Scholar | 12451181PubMed |

Shear, W. A. (1967). Expanding the palpi of male spiders. Breviora 259, 1–27.

Simon, E. (1900). Arachnida. In ‘Fauna Hawaiiensis, or the Zoology of the Sandwich Isles: Being Results of the Explorations Instituted by the Royal Society of London Promoting Natural Knowledge and the British Association for the Advancement of Science’. (Ed. D. Sharp.) Vol. II, part V, pp. 443–519. (Cambridge University Press: Cambridge, UK.)

Simon, C. (1987). Biology: a Hawaiian evolutionary introduction. Trends in Ecology & Evolution 2, 175–178.
Biology: a Hawaiian evolutionary introduction.Crossref | GoogleScholarGoogle Scholar |

Torsvik, T. H., Doubrovine, P. V., Steinberger, B., Gaina, C., Spakman, W., and Domeier, M. (2017). Pacific plate motion change caused the Hawaiian–Emperor Bend. Nature Communications 8, 15660.
Pacific plate motion change caused the Hawaiian–Emperor Bend.Crossref | GoogleScholarGoogle Scholar | 29018184PubMed |

Wagner, W. L., and Funk, V. A. (Eds) (1995). ‘Hawaiian Biogeography: Evolution on a Hot Spot Archipelago.’ (Smithsonian Institution Press: Washington, DC, USA.)

Wainwright, P. C., and Price, S. A. (2016). The impact of organismal innovation on functional and ecological diversification. Integrative and Comparative Biology 56, 479–488.
The impact of organismal innovation on functional and ecological diversification.Crossref | GoogleScholarGoogle Scholar | 27375274PubMed |

Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35, 977–994.
A general dynamic theory of oceanic island biogeography.Crossref | GoogleScholarGoogle Scholar |

Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2009). A general dynamic theory of oceanic island biogeography: extending the MacArthur–Wilson theory to accommodate the rise and fall of volcanic islands. In ‘The Theory of Island Biogeography Revisited’. (Eds J. B. Losos, and R. E. Ricklefs.) pp. 88–115. (Princeton University Press: Princeton, NJ, USA.) https://doi.org/10.1515/9781400831920.88

Wunderlich, J. (1995). Revision und Neubeschreibung einiger Gattungen der Familie Theridiidae aus der Nearktis und Neotropis (Arachnida: Araneae). Beiträge Zur Araneologie 4, 609–615.