Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal

Caitlin M. Baker https://orcid.org/0000-0002-9782-4959 A D , Kate Sheridan https://orcid.org/0000-0001-5065-3956 A , Shahan Derkarabetian https://orcid.org/0000-0002-9163-9277 A , Abel Pérez-González https://orcid.org/0000-0002-4245-3302 B , Sebastian Vélez C and Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 A
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 01238, USA.

B División de Aracnología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Avenida Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina.

C Biology Department, Worcester State University, 486 Chandler Street, Worcester, MA 01602, USA.

D Corresponding author. Email: baker02@g.harvard.edu

Invertebrate Systematics 34(6) 637-660 https://doi.org/10.1071/IS19069
Submitted: 21 November 2019  Accepted: 5 May 2020   Published: 14 August 2020

Abstract

Triaenonychidae Sørensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and including representatives from all the major geographic areas from which they are known. Phylogenetic analyses using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa. To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic dispersal – to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed, and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.

Additional keywords: Insidiatores, phylogeny, vicariance.


References

Ali, J. R., and Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88, 145–166.
Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma).Crossref | GoogleScholarGoogle Scholar |

Baker, C. M., Boyer, S. L., and Giribet, G. (2020). A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance. Journal of Biogeography 47, 1345–1361.
A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance.Crossref | GoogleScholarGoogle Scholar |

Beaulieu, J. M., Tank, D. C., and Donoghue, M. J. (2013). A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. BMC Evolutionary Biology 13, 80.
A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana.Crossref | GoogleScholarGoogle Scholar | 23565668PubMed |

Benavides, L. R., Cosgrove, J. G., Harvey, M. S., and Giribet, G. (2019). Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Molecular Phylogenetics and Evolution 139, 106509.
Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life.Crossref | GoogleScholarGoogle Scholar | 31132522PubMed |

Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Boyer, S. L., and Giribet, G. (2007). A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics 23, 337–361.
A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar |

Cantrill, D. J., and Poole, I. (2012). Icehouse to hothouse: the Permian–Triassic crisis and Triassic vegetation. In ‘The Vegetation of Antarctica through Geological Time’. pp. 105–160. (Cambridge University Press: Cambridge, UK.)

Chernomor, O., von Haeseler, A., and Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997–1008.
Terrace aware data structure for phylogenomic inference from supermatrices.Crossref | GoogleScholarGoogle Scholar | 27121966PubMed |

Chousou-Polydouri, N., Carmichael, A., Szűts, T., Saucedo, A., Gillespie, R., Griswold, C., and Wood, H. M. (2019). Giant goblins above the waves at the southern end of the world: the biogeography of the spider family Orsolobidae (Araneae, Dysderoidea). Journal of Biogeography 46, 332–342.
Giant goblins above the waves at the southern end of the world: the biogeography of the spider family Orsolobidae (Araneae, Dysderoidea).Crossref | GoogleScholarGoogle Scholar |

Cluzel, D., Maurizot, P., Collot, J., and Sevin, B. (2012). An outline of the geology of New Caledonia; from Permian–Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35, 72–86.
An outline of the geology of New Caledonia; from Permian–Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution.Crossref | GoogleScholarGoogle Scholar |

Colloff, M. J. (2013). Species-groups and biogeography of the oribatid mite family Malaconothridae (Oribatida: Malaconothroidea), with new species from the south-western Pacific region. Zootaxa 3722, 401–438.
Species-groups and biogeography of the oribatid mite family Malaconothridae (Oribatida: Malaconothroidea), with new species from the south-western Pacific region.Crossref | GoogleScholarGoogle Scholar | 26171536PubMed |

Cooper, A., and Cooper, R. A. (1995). The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proceedings of the Royal Society of London – B. Biological Sciences 261, 293–302.
The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Starrett, J., Tsurusaki, N., Ubick, D., Castillo, S., and Hedin, M. (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys 760, 1–36.
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Benavides, L. R., and Giribet, G. (2019). Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources 19, 1531–1544.
Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault.Crossref | GoogleScholarGoogle Scholar | 31448547PubMed |

Dunlop, J. A., Anderson, L. I., Kerp, H., and Hass, H. (2003). A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh. Earth Sciences 94, 341–354.
A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland.Crossref | GoogleScholarGoogle Scholar |

Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., and Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61, 717–726.
Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales.Crossref | GoogleScholarGoogle Scholar | 22232343PubMed |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrujenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Forster, R. R. (1954). The New Zealand harvestmen (sub-order Laniatores). Canterbury Museum Bulletin 2, 1–329.

Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. (2011). Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2, 444.
Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones.Crossref | GoogleScholarGoogle Scholar | 21863011PubMed |

Garwood, R. J., Sharma, P. P., Dunlop, J. A., and Giribet, G. (2014). A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology 24, 1017–1023.
A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development.Crossref | GoogleScholarGoogle Scholar | 24726154PubMed |

Giribet, G., and Baker, C. M. (2019). Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology. Journal of Biogeography 46, 1912–1918.
Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Boyer, S. L. (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent or both?Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Edgecombe, G. D. (2006). The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society. Linnean Society of London 89, 65–78.
The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Shear, W. A. (2010). The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bulletin of the Museum of Comparative Zoology 160, 1–33.
The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |

Giribet, G., Vogt, L., González, A. P., Sharma, P. P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Boyer, S. L., Baker, C. M., Fernández, R., Sharma, P. P., de Bivort, B. L., Daniels, S. R., Harvey, M. S., and Griswold, C. E. (2016). A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) and the limits of taxonomic sampling. Zoological Journal of the Linnean Society 178, 523–545.
A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) and the limits of taxonomic sampling.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Buckman-Young, R. S., Costa, C. S., Baker, C. M., Benavides, L. R., Branstetter, M. G., Daniels, S. R., and Pinto-da-Rocha, R. (2018). The ‘Peripatos’ in Eurogondwana? – Lack of evidence that southeast Asian onychophorans walked through Europe. Invertebrate Systematics 32, 842–865.
The ‘Peripatos’ in Eurogondwana? – Lack of evidence that southeast Asian onychophorans walked through Europe.Crossref | GoogleScholarGoogle Scholar |

Grandcolas, P., Murienne, J., Robillard, T., Desutter-Grandcolas, L., Jourdan, H., Guilbert, E., and Deharveng, L. (2008). New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3309–3317.
New Caledonia: a very old Darwinian island?Crossref | GoogleScholarGoogle Scholar | 18765357PubMed |

Harvey, M. S., Rix, M. G., Harms, D., Giribet, G., Vink, C. J., and Walter, D. E. (2017). The biogeography of Australasian arachnids. In ‘Handbook of Australasian Biogeography’. (Ed. M. C. Ebach.) pp. 241–268. (CRC Press: Boca Raton, FL, USA.)

Hedin, M., and McCormack, M. (2017). Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens). Journal of Biogeography 44, 1665–1678.
Biogeographical evidence for common vicariance and rare dispersal in a southern Appalachian harvestman (Sabaconidae, Sabacon cavicolens).Crossref | GoogleScholarGoogle Scholar |

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Hunt, G. S. (1990). Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae). Records of the Australian Museum 42, 45–68.
Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S. (1996). A preliminary phylogenetic analysis of Australian Triaenonychidae (Arachnida: Opiliones). Revue Suisse de Zoologie hors série 1, 295–308.

Hunt, G. S., and Hickman, J. L. (1993). A revision of the genus Lomanella Pocock and its implications for family level classification in the Travunioidea (Arachnida: Opiliones: Triaenonychidae). Records of the Australian Museum 45, 81–119.
A revision of the genus Lomanella Pocock and its implications for family level classification in the Travunioidea (Arachnida: Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Karaman, I. (2019). A redescription and family placement of Buemarinoa patrizii Roewer, 1956 (Opiliones, Laniatores, Triaenonychidae). Biologia Serbica 41, 67–77.
A redescription and family placement of Buemarinoa patrizii Roewer, 1956 (Opiliones, Laniatores, Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software Version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kury, A. B., Mendes, A. C., and Souza, D. R. (2014). World checklist of Opiliones species (Arachnida). Part 1: Laniatores – Travunioidea and Triaenonychoidea. Biodiversity Data Journal 2, e4094.
World checklist of Opiliones species (Arachnida). Part 1: Laniatores – Travunioidea and Triaenonychoidea.Crossref | GoogleScholarGoogle Scholar |

Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 292, 679–686.
Sea level change through the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 11326090PubMed |

Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., and Trewick, S. A. (2008). The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145, 173–197.
The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora.Crossref | GoogleScholarGoogle Scholar |

Machado, G. (2007). Maternal or paternal egg guarding? Revisiting parental care in triaenonychid harvestmen (Opiliones). The Journal of Arachnology 35, 202–204.
Maternal or paternal egg guarding? Revisiting parental care in triaenonychid harvestmen (Opiliones).Crossref | GoogleScholarGoogle Scholar |

Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R. R., and Renner, S. S. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America 109, 7793–7798.
Distribution of living Cupressaceae reflects the breakup of Pangea.Crossref | GoogleScholarGoogle Scholar | 22550176PubMed |

Maury, E. A. (1990). Triaenonychidae Sudamericanos. VI. Tres nuevas especies del género Nuncia Loman 1902 (Opiliones, Laniatores). Boletín de la Sociedad de Biología de Concepción 61, 103–119.

McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |

McLoughlin, S., and Kear, B. P. (2010). The Australasian Cretaceous scene. Alcheringa 34, 197–203.
The Australasian Cretaceous scene.Crossref | GoogleScholarGoogle Scholar |

Mendes, A. C. (2009). Avaliação do status sistemático dos táxons supragenéricos da infra-ordem Insidiatores Loman, 1902 (Arachnida, Opiliones, Laniatores). Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Brazil.

Mendes, A. C., and Kury, A. B. (2008). Intercontinental Triaenonychidae – the case of Ceratomontia (Opiliones, Insidiatores). The Journal of Arachnology 36, 273–279.
Intercontinental Triaenonychidae – the case of Ceratomontia (Opiliones, Insidiatores).Crossref | GoogleScholarGoogle Scholar |

Mortimer, N., Campbell, H. J., Tulloch, A. J., King, P. R., Stagpoole, V. M., Wood, R. A., Rattenbury, M. S., Sutherland, R., Adams, C. J., Collot, J., and Seton, M. (2017). Zealandia: Earth’s hidden continent. GSA Today 27, 27–35.
Zealandia: Earth’s hidden continent.Crossref | GoogleScholarGoogle Scholar |

Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., and Giribet, G. (2014). A living fossil tale of Pangaean biogeography. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20132648.
A living fossil tale of Pangaean biogeography.Crossref | GoogleScholarGoogle Scholar |

Nattier, R., Pellens, R., Robillard, T., Jourdan, H., Legendre, F., Caesar, M., Nel, A., and Grandcolas, P. (2017). Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence. Scientific Reports 7, 3705.
Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence.Crossref | GoogleScholarGoogle Scholar | 28623347PubMed |

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Porto, W., and Pérez-González, A. (2019). Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia. The Journal of Arachnology 47, 370–376.
Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia.Crossref | GoogleScholarGoogle Scholar |

Pyron, R. A. (2014). Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Systematic Biology 63, 779–797.
Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians.Crossref | GoogleScholarGoogle Scholar | 24951557PubMed |

Ritchie, A. M., Lo, N., and Ho, S. Y. W. (2017). The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Systematic Biology 66, 413–425.
| 27798404PubMed |

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |

Selden, P. A., Dunlop, J. A., Giribet, G., Zhang, W., and Ren, D. (2016). The oldest armoured harvestman (Arachnida: Opiliones: Laniatores), from Upper Cretaceous Myanmar amber. Cretaceous Research 65, 206–212.
The oldest armoured harvestman (Arachnida: Opiliones: Laniatores), from Upper Cretaceous Myanmar amber.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–142.
The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2014). A revised dated phylogeny of the arachnid order Opiliones. Frontiers in Genetics 5, 255.
A revised dated phylogeny of the arachnid order Opiliones.Crossref | GoogleScholarGoogle Scholar | 25120562PubMed |

Sharma, P. P., Baker, C. M., Cosgrove, J. G., Johnson, J. E., Oberski, J. T., Raven, R. J., Harvey, M. S., Boyer, S. L., and Giribet, G. (2018). A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae. Molecular Phylogenetics and Evolution 122, 37–45.
A revised dated phylogeny of scorpions: phylogenomic support for ancient divergence of the temperate Gondwanan family Bothriuridae.Crossref | GoogleScholarGoogle Scholar | 29366829PubMed |

Shear, W. A. (1980). A review of the Cyphophthalmi of the United States and Mexico, with a proposed reclassification of the suborder (Arachnida, Opiliones). American Museum Novitates 2705, 1–34.

Soares, H. E. M. (1968). Contribuição ao estudo dos opiliões do Chile (Opiliones: Gonyleptidae, Triaenonychidae). Papéis Avulsos de Zoologia 21, 259–272.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Sutherland, R., Dickens, G. R., Blum, P., Agnini, C., Alegret, L., Asatryan, G., Bhattacharya, J., Bordenave, A., Chang, L., Collot, J., Cramwinckel, M. J., Dallanave, E., Drake, M. K., Etienne, S. J. G., Giorgioni, M., Gurnis, M., Harper, D. T., Huang, H. H. M., Keller, A. L., Lam, A. R., Li, H., Matsui, H., Morgans, H. E. G., Newsam, C., Park, Y. H., Pascher, K. M., Pekar, S. F., Penman, D. E., Saito, S., Stratford, W. R., Westerhold, T., and Zhou, X. (2020). Continental-scale geographic change across Zealandia during Paleogene subduction initiation. Geology 48, 419–424.
Continental-scale geographic change across Zealandia during Paleogene subduction initiation.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. K. (2011). Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification. Zootaxa 2773, 1–65.
Revision of the genus Megalopsalis (Arachnida: Opiliones: Phalangioidea) in Australia and New Zealand and implications for phalangioid classification.Crossref | GoogleScholarGoogle Scholar |

Thomas, S. M., and Hedin, M. (2008). Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Molecular Phylogenetics and Evolution 46, 645–658.
Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae).Crossref | GoogleScholarGoogle Scholar | 18053750PubMed |

Trewick, S. A., Paterson, A. M., and Campbell, H. J. (2007). Hello New Zealand. Journal of Biogeography 34, 1–6.
Hello New Zealand.Crossref | GoogleScholarGoogle Scholar |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Vélez, S. (2011). Biogeography and speciation of arthropods across the Tasman Sea: Craterostigmus tasmanianus (Chilopoda: Craterostigmomorpha: Craterostigmidae), Monoscutidae (Opiliones: Eupnoi: Phalangioidea), and Triaenonychidae (Opiliones: Laniatores). Ph.D. Thesis, Harvard University, Boston, MA, USA.

Vélez, S., Fernández, R., and Giribet, G. (2014). A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae). Invertebrate Systematics 28, 565–589.
A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae).Crossref | GoogleScholarGoogle Scholar |

Wallis, G. P., and Jorge, F. (2018). Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia. Molecular Ecology 27, 4368–4396.
Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia.Crossref | GoogleScholarGoogle Scholar | 30240539PubMed |

Wei, W. (2004). Opening of the Australia–Antarctica Gateway as dated by nannofossils. Marine Micropaleontology 52, 133–152.
Opening of the Australia–Antarctica Gateway as dated by nannofossils.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 11975347PubMed |

Wolfe, J. M., Daley, A. C., Legg, D. A., and Edgecombe, G. D. (2016). Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews 160, 43–110.
Fossil calibrations for the arthropod Tree of Life.Crossref | GoogleScholarGoogle Scholar |

Xie, W., Lewis, P. O., Fan, Y., Kuo, L., and Chen, M. H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60, 150–160.
Improving marginal likelihood estimation for Bayesian phylogenetic model selection.Crossref | GoogleScholarGoogle Scholar | 21187451PubMed |