Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetic position of the enigmatic termite family Stylotermitidae (Insecta : Blattodea)

Li-Wei Wu A , Thomas Bourguignon B C , Jan Šobotník C , Ping Wen D , Wei-Ren Liang E and Hou-Feng Li E F
+ Author Affiliations
- Author Affiliations

A The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou, Taiwan.

B Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.

C Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.

D Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan, China.

E Department of Entomology, National Chung Hsing University, Taichung, Taiwan.

F Corresponding author. Email: houfeng@nchu.edu.tw

Invertebrate Systematics 32(5) 1111-1117 https://doi.org/10.1071/IS17093
Submitted: 14 December 2017  Accepted: 6 April 2018   Published: 9 October 2018

Abstract

Termites are eusocial insects currently classified into nine families, of which only Stylotermitidae has never been subjected to any molecular phylogenetic analysis. Stylotermitids present remarkable morphology and have the unique habit of feeding on living trees. We sequenced mitogenomes of five stylotermitid samples from China and Taiwan to reconstruct the phylogenetic position of Stylotermitidae. Our analyses placed Stylotermitidae as the sister group of all remaining Neoisoptera. The systematic position of Stylotermitidae calls for additional studies of their biology, including their developmental pathways and pheromone communication, which have the potential to change our understanding of termite evolution.

Additional keywords: Asian relict, mitochondrial genome, molecular systematics, Oriental region.


References

Barbosa, J. R. C., and Constantino, R. (2017). Polymorphism in the neotropical termite Serritermes serrifer. Entomologia Experimentalis et Applicata 163, 43–50.
Polymorphism in the neotropical termite Serritermes serrifer.Crossref | GoogleScholarGoogle Scholar |

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69, 313–319.
MITOS: improved de novo metazoan mitochondrial genome annotation.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Šobotník, J., Hanus, R., and Roisin, Y. (2009). Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross‐roads of worker caste evolution in termites. Evolution & Development 11, 659–668.
Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross‐roads of worker caste evolution in termites.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Šobotník, J., Sillam-Dussès, D., Jiroš, P., Hanus, R., Roisin, Y., and Miura, T. (2012). Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste. PLoS One 7, e44527.
Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Lo, N., Cameron, S. L., Šobotník, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T., and Evans, T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution 32, 406–421.
The evolutionary history of termites as inferred from 66 mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar |

Bourguignon, T., Lo, N., Šobotník, J., Ho, S. Y. W., Iqbal, N., Coissac, E., Lee, M., Jendryka, M., Sillam-Dussès, D., Křížková, B., Roisin, Y., and Evans, T. A. (2017). Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Molecular Biology and Evolution 34, 589–597.

Cameron, S. L. (2014). How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Systematic Entomology 39, 400–411.
How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research.Crossref | GoogleScholarGoogle Scholar |

Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J., and Evans, T. A. (2012). A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Molecular Phylogenetics and Evolution 65, 163–173.
A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades.Crossref | GoogleScholarGoogle Scholar |

Chatterjee, P.N., and Thakur, M.L. (1963). Biology and ecology of Oriental termites (Isoptera). Some observations on Sarvaritermes faveolus Chatterjee and Thakur (Isoptera: Stylotermitidae). Indian Forester 89, 635–637.

Chatterjee, P. N., and Thakur, M. L. (1964). Sarvaritermes faveolus gen. et sp. nov. from Kulu Valley (Punjab: India) [Isoptera], with a discussion on the systematic position and relationship of the family Stylotermitidae. Zoologischer Anzeiger 173, 149–162.

Chen, Y.-C., Wang, C.-T., Lees, D.C., and Wu, L.-W. (2017). Higher DNA insert fragment sizes improve mitogenomic assemblies from metagenomic pyrosequencing datasets: an example using Limenitidinae butterflies (Lepidoptera, Nymphalidae). Mitochondrial DNA Part A , 1–6.

Chhotani, O.B. (1983). A review of the Rhinotermitidae and Stylotermitidae (Isoptera) from the Oriental region. Oriental Insects 17, 109–125.

Cleveland, L. R. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences 17, i–xx, 185–342 [Plates 1–60].
The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach.Crossref | GoogleScholarGoogle Scholar |

Crampton-Platt, A., Douglas, W. Y., Zhou, X., and Vogler, A. P. (2016). Mitochondrial metagenomics: letting the genes out of the bottle. GigaScience 5, 15.
Mitochondrial metagenomics: letting the genes out of the bottle.Crossref | GoogleScholarGoogle Scholar |

Donovan, S., Jones, D., Sands, W., and Eggleton, P. (2000). Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society. Linnean Society of London 70, 467–513.
Morphological phylogenetics of termites (Isoptera).Crossref | GoogleScholarGoogle Scholar |

Emerson, A. E. (1971). Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bulletin of the American Museum of Natural History 146, 243–303.

Engel, M. S., and Krishna, K. (2004). Family-group names for termites (Isoptera). American Museum Novitates 3432, 1–9.

Engel, M. S., Grimaldi, D. A., and Krishna, K. (2009). Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. American Museum Novitates 3650, 1–27.
Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance.Crossref | GoogleScholarGoogle Scholar |

Holmgren, K., and Holmgren, N. (1917). Report on a collection of termites from India. Memoirs of the Department of Agriculture in India 5, 135–171.

Inward, D. J., Vogler, A. P., and Eggleton, P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44, 953–967.
A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology.Crossref | GoogleScholarGoogle Scholar |

Krishna, K., Grimaldi, D. A., Krishna, V., and Engel, M. S. (2013). Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History 377, 1–2704.
Treatise on the Isoptera of the world.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

Liang, W.-R., Wu, C.-C., and Li, H.-F. (2017). Discovery of a cryptic termite genus, Stylotermes (Isoptera: Stylotermitidae), in Taiwan, with the description of a new species. Annals of the Entomological Society of America 110, 360–373.
Discovery of a cryptic termite genus, Stylotermes (Isoptera: Stylotermitidae), in Taiwan, with the description of a new species.Crossref | GoogleScholarGoogle Scholar |

Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., and Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology 10, 801–804.
Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches.Crossref | GoogleScholarGoogle Scholar |

Mathur, R. N., and Chhotani, O. B. (1959). Revision of Stylotermes Holm. and Holm. (Isoptera: Rhinotermitidae: Stylotermitinae). Zoologischer Anzeiger 163, 40–53.

Ott, M., Zola, J., Stamatakis, A., and Aluru, S. (2007). Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. Proceedings of the 2007 ACM/IEEE conference on Supercomputing, no. 4. pp. 1–11. (ACM, NY, USA.) https://doi.org/10.1145/1362622.1362628

Parmentier, D., and Roisin, Y. (2003). Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). Journal of Morphology 255, 69–79.
Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae).Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., and Drummond, A. J. (2014). Tracer v1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/ [accessed 5 August 2015].

Roisin, Y. (1988). Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107, 339–347.
Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Roonwal, M. L. (1975). Phylogeny and status of termite families Stylotermitidae and Indotermitidae with three-segmented tarsi, and the evolution of tarsal segmentation in the Isoptera. Biologisches Centralblatt 94, 27–43.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar |

Tsai, P.-H., Ping, C.-K., and Li, G.-X. (1978). Four new species of the genus Stylotermes Holmgren, K. et N. (Isoptera: Rhinotermitidae, Stylotermitinae) from Kwangsi. Acta Entomologica Sinica 21, 429–436.

Xie, Y., MacKinnon, J., and Li, D. (2004). Study on biogeographical divisions of China. Biodiversity and Conservation 13, 1391–1417.
Study on biogeographical divisions of China.Crossref | GoogleScholarGoogle Scholar |