Systematic revision, diversity patterns and trophic ecology of the tropical Indo-West Pacific sea slug genus Phanerophthalmus A. Adams, 1850 (Cephalaspidea, Haminoeidae)
Jennifer Austin A , Terrence Gosliner B and Manuel A. E. Malaquias A CA Phylogenetic Systematics and Evolution Research Group, Section of Taxonomy and Evolution, Department of Natural History, University Museum of Bergen, University of Bergen, PB 7800, 5020 Bergen, Norway.
B California Academy of Sciences, Department of Invertebrate Zoology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA.
C Corresponding author. Email: Manuel.Malaquias@uib.no
Invertebrate Systematics 32(6) 1336-1387 https://doi.org/10.1071/IS17086
Submitted: 14 November 2017 Accepted: 2 July 2018 Published: 4 December 2018
Abstract
Phanerophthalmus is a genus of Indo-West Pacific sea slugs inhabiting seagrass and coral reefs with up to now seven species currently recognised as valid. The goals of this study are to revise the systematics of Phanerophthalmus, infer its phylogeny and patterns of diversity, as well as study its diet. Morphology was combined with molecular phylogenetics based on two mitochondrial (cytochrome c oxidase subunit I, 16S rRNA) and one nuclear (28S rRNA) genes. Molecular species delimitation methods (ABGD, DISSECT) were employed to aid delimiting species. Diet was assessed by gut content analysis. Seventeen species were recognised, 10 of them new to science (P. albotriangulatum, sp. nov., P. anettae, sp. nov., P. batangas, sp. nov., P. boucheti, sp. nov., P. cerverai, sp. nov., P. lentigines, sp. nov., P. paulayi, sp. nov., P. purpura, sp. nov., P. rudmani, sp. nov., P. tibiricae, sp. nov.). Phanerophthalmus has its highest diversity in the Western Pacific where 13 species occur with a peak in the Coral Triangle (11 species; three only known from here). Diversity decreases towards the Central Pacific with five species and Indian Ocean/Red Sea with four species. Only two species are distributed across the Indo-West Pacific. Preliminary gut content analysis suggests these slugs feed on diatoms.
Additional keywords: coral reefs, gastropoda, heterobranchia, Indian Ocean, marine biodiversity, mollusca, Pacific Ocean, red sea, seagrass, taxonomy.
References
Adams, A. (1850). Monograph of the family Bullidae. In ‘Thesaurus Conchyliorum, or Monographs of Genera of Shells, Vol. 2’. (Ed. G. B. Sowerby, II.) pp. 553–608. (Sowerby: London.)Adams, H., and Adams, A. (1858). ‘Class Gastropoda. The Genera of Recent Mollusca: Arranged According to Their Organization, Vol. 2.’ (Van Voorst: London.)
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
| A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |
Anderson, J. (1988–2016a). Kenya Sea Slugs: Phanerophthalmus smaragdinus Bergh, 1880. Available at http://www.nudibranch.org/Kenya%20Sea%20Slugs/html/nudibranchs/Phanerophthalmus%20smaragdinus%2001.html [Accessed 17 March 2016].
Anderson J. 1988–2016b http://www.nudibranch.org/Philippine%20Sea%20Slugs/html/nudibranchs/phanerophthalmus-sp2-01.html
Anderson, J. (1999–2016a). Papua New Guinea Sea Slugs: Phanerophthalmus smaragdinus (Rüppell & Leuckart, 1828). Available at http://www.nudibranch.org/Papua%20New%20Guinea%20Sea%20Slugs/html/nudibranchs/Phanerophthalmus%20smaragdinus%2001.html [Accessed 20 September 2018].
Anderson, J. (1999–2016b). Indonesia Sea Slugs: Noalda sp. 3. Available at http://www.nudibranch.org/Indonesia%20Sea%20Slugs/html/nudibranchs/noalda-sp3-01.html [Accessed 20 September 2018].
Atsushi, O. (1999). ‘Opisthobranchs of Kerama Islands.’ (TBS-Britannica & Co.: Tokyo, Japan.)
Atsushi, O. (2004). ‘Opisthobranchs of Ryukyu Islands.’ (Ruttles: Tokyo, Japan.)
Avise, J. C. (2004). ‘Molecular Markers, Natural History and Evolution, 2nd Edn.’ (Sinauer Associates: Sunderland, MA.)
Barber, P. H., Erdmann, M. V., and Palumbi, S. R. (2006). Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60, 1825–1839.
| Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle.Crossref | GoogleScholarGoogle Scholar |
Bergh, R. (1905). ‘Die Opistobranchiata der Siboga Expedition.’ Series: Siboga-Expeditie 50, 248.
Bidgrain, P. (2006). Phanerophthalmus smaragdinus from Reunion Island. [Message in] Sea Slug Forum. Available at http://www.seaslugforum.net/find/15879 [Accessed 17 March 2016].
Bouchet, P. (2015a). Phanerophthalmus cylindricus (Pease, 1861). World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715655 [Accessed 17 March 2016].
Bouchet, P. (2015b). Phanerophthalmus engeli Labbé, 1934. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715654 [Accessed 20 March 2016].
Bouchet, P. (2015c). Phanerophthalmus pauper Bergh, 1905. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715652 [Accessed 17 March 2016].
Bouchet, P. (2015d). Phanerophthalmus luteus (Quoy & Gaimard, 1833). World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715649 [Accessed 17 March 2016].
Bouchet, P. (2015e). Phanerophthalmus collaris Eales, 1938. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715653 [Accessed 17 March 2016].
Bouchet, P. (2015f). Phanerophthalmus olivaceus (Ehrenberg, 1828). World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715645 [Accessed 17 March 2016].
Bouchet, P. (2015g). Phanerophthalmus perpallidus Risbec, 1928. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=715651 [Accessed 17 March 2016].
Bouchet, P., and Rosenberg, G. (2015). Phanerophthalmus A. Adams, 1850. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=599465 [Accessed 14 March 2016].
Bouckaert, R. R. (2010). DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372–1373.
| DensiTree: making sense of sets of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |
Bowen, B. W., Rocha, L. A., Toonen, R. J., and Karl, S. A. (2013). The origins of tropical marine biodiversity. Trends in Ecology & Evolution 28, 359–366.
| The origins of tropical marine biodiversity.Crossref | GoogleScholarGoogle Scholar |
Briggs, J. C. (1999). Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53, 326–335.
| Coincident biogeographic patterns: Indo-West Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |
Burn, R., and Thompson, T. E. (1998). Order Cephalaspidea. In ‘Mollusca: the Southern Synthesis, Vol. 5, Part B.’ (Eds P. L. Beesley, G. J. B. Ross and A. Wells.) pp. 943–959. (CSIRO Publishing: Melbourne, Vic.)
Carlson, C., and Hoff, P. J. (2003). The Opisthobranchs of the Mariana Islands. Micronesia 35–36, 271–293.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |
Dance, S. P. (1986). ‘A History of Shell Collecting.’ (E. J. Brill and W. Backuys: Leiden, Netherlands.)
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar |
DiBattista, J. D., Choat, J. H., Gaither, M. R., Hobbs, J.-P. A., Lozano-Cortés, D., Myers, R. F., Paulay, G., Rocha, L. A., Toonen, R. J., Westneat, M. W., and Berumen, M. L. (2016). On the origin of endemic species in the Red Sea. Journal of Biogeography 43, 13–30.
| On the origin of endemic species in the Red Sea.Crossref | GoogleScholarGoogle Scholar |
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |
Drummond, A. J., Ho, S. Y. W., Rawlence, N., and Rambaut, A. (2007). ‘A Rough Guide to BEAST 1.4.’ (University of Auckland: Auckland, New Zealand.)
Eales, N. B. (1938). A systematic and anatomical account of the Opisthobranchia. Scientific Reports of the John Murray Expedition 1933–34, 77–122.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar |
Ehrenberg, C. G. (1828). ‘Decas 1. Mollusca. Symbolae Physicae, seu Icones et Descriptiones Animalium Evertebratorum Sepositis Insectis quae ex Itinere per Africam Borealem et Asiam Occidentalem – Novae aut Illustrate Redierunt.’ (Mittler, Officina Academica: Berlin.)
Evans, S. M., McKenna, C., Simpson, S. D., Tournois, J., and Genner, M. J. (2016). Patterns of species range evolution in Indo-Pacific reef assemblages reveal the Coral Triangle as a net source of transoceanic diversity. Biology Letters 12, 20160090.
| Patterns of species range evolution in Indo-Pacific reef assemblages reveal the Coral Triangle as a net source of transoceanic diversity.Crossref | GoogleScholarGoogle Scholar |
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
Fransen, C. (2015). Cryptophthalmus Rafinesque, 1814. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=588113 [Accessed 5 July 2016].
Galloway, R. W., and Kemp, E. M. (1981). Late Cainozoic environments in Australia. In ‘Ecological Biogeography in Australia’. (Ed. A. Keast.) pp. 51–80. (Springer: Netherlands.)
Gofas, S., and Rosenberg, G. (2015). Phanerophthalmus smaragdinus. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=599466 [Accessed 17 March 2015].
Gosliner, T. M. (1987). ‘Nudibranchs of Southern Africa. A Guide to Opisthobranch Molluscs of Southern Africa.’ (E. J. Brill: Leiden, Netherlands.)
Gosliner, T. M., and Draheim, R. (1996). Indo-Pacific opisthobranch gastropod biogeography: how do we know what we don’t know? American Malacological Bulletin 12, 37–43.
Gosliner, T. M., Behrens, D. W., and Valdés, Á. (2008). ‘Indo Pacific Nudibranchs and Sea Slugs: a Field Guide to the World’s Most Diverse Fauna.’ (Sea Challenges Natural History Books and California Academy of Sciences: San Francisco, CA.)
Gosliner, T. M., Valdés, Á., and Behrens, D. W. (2015). ‘Nudibranch and Sea Slug Identification: Indo-Pacific.’ (New World Publications: Jacksonville, FL.)
Gray, M. E. (1850). ‘Figures of Molluscous Animals, Selected from Various Authors, Vol. 4.’ (Longman, Brown, Green and Longmans: London.)
Gray, J. E. (1857). ‘Guide to the Systematic Distribution of Mollusca in the British Museum.’ (The Order of the Trustees: London.)
Heled, J., and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570–580.
| Bayesian inference of species trees from multilocus data.Crossref | GoogleScholarGoogle Scholar |
Heller, J., and Thompson, T. E. (1983). Opisthobranch molluscs of the Sudanese Red Sea. Zoological Journal of the Linnean Society 78, 317–348.
| Opisthobranch molluscs of the Sudanese Red Sea.Crossref | GoogleScholarGoogle Scholar |
Holznagel, W. E. (1998). Research note: a nondestructive method for cleaning gastropod radulae from frozen, alcohol fixed, or dried material. American Malacological Bulletin 14, 181–183.
Hori, S. (2017). Gastropoda. Euopisthobranchia. Smaragdinellidea (Atlas). In ‘Marine Mollusks in Japan, Second Edition’. (Ed. T. Okutani.) pp. 439, pl. 395. (Takai University Press: Japan.)
Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
| MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar |
Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.
| Bayesian inference of phylogeny and its impact on evolutionary biology.Crossref | GoogleScholarGoogle Scholar |
International Commission of Zoological Nomenclature (ICZN) (1999). ‘International Code of Zoological Nomenclature. 4th Edn.’ (The International Trust for Zoological Nomenclature: London.)
Jones, G., Aydin, Z., and Oxelman, B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31, 991–998.
| DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar |
Kay, A. E. (1979). ‘Hawaiian Marine Shells: Reef and Shore Fauna of Hawaii. Section 4. Mollusca.’ (Bishop Museum Press: Honolulu, HI.)
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |
Keyse, J., Crandall, E. D., Toonen, R. J., Meyer, C. P., Treml, E. A., and Riginos, C. (2014). The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region. Bulletin of Marine Science 90, 47–78.
| The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region.Crossref | GoogleScholarGoogle Scholar |
Kiruba-Sankar, R., Immanuel, T., Goutham-Bharathi, M. P., and Roy, S. D. (2016). Additions to the opisthobranch fauna of Nicobar Group of Islands, India. Indian Journal of Geo-Marine Sciences 45, 319–322.
Labbé, A. (1934). Opisthobranches et Silicodermés (Onchidiadés). Mémoires du Musée Royale d’Histoire Naturelle de Belgique 2, 1–83.
Malaquias, M. A. E. (2010). Systematics, phylogeny, and natural history of Bullacta exarata (Philippi, 1849): an endemic cephalaspidean gastropod from the China Sea. Journal of Natural History 44, 2015–2019.
Malaquias, M. A. E., Condinho, S., Cervera, J. L., and Sprung, M. (2004). Diet and feeding biology of Haminoea orbygniana (Mollusca, Gastropoda: Cephalaspidea). Journal of the Marine Biological Association of the United Kingdom 84, 767–772.
| Diet and feeding biology of Haminoea orbygniana (Mollusca, Gastropoda: Cephalaspidea).Crossref | GoogleScholarGoogle Scholar |
Malaquias, M. A. E., Berecibar, E., and Reid, D. G. (2009a). Reassessment of the trophic position of Bullidae (Gastropoda: Cephalaspidea) and the importance of diet in the evolution of cephalaspidean gastropods. Journal of Zoology 277, 88–97.
| Reassessment of the trophic position of Bullidae (Gastropoda: Cephalaspidea) and the importance of diet in the evolution of cephalaspidean gastropods.Crossref | GoogleScholarGoogle Scholar |
Malaquias, M. A. E., Mackenzie-Dodds, J., Bouchet, P., Gosliner, T., and Reid, D. G. (2009b). A molecular phylogeny of the Cephalaspidea sensu lato (Gastropoda: Euthyneura): Architectibranchia redefined and Runcinacea reinstated. Zoologica Scripta 38, 23–41.
| A molecular phylogeny of the Cephalaspidea sensu lato (Gastropoda: Euthyneura): Architectibranchia redefined and Runcinacea reinstated.Crossref | GoogleScholarGoogle Scholar |
Marcus, Er., and Burch, J. B. (1965). Marine Euthyneuran Gastropoda from Eniwetok Atoll, Western Pacific. Malacologia 3, 235–262.
Marcus, Ev., and Marcus, Er. (1970). Some gastropods from Madagascar and West Mexico. Malacologia 10, 181–223.
Medina, M., Lal, S., Vallès, Y., Takaoka, T. L., Dayrat, B. A., Boore, J. L., and Gosliner, T. (2011). Crawling through time: transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics. Marine Genomics 4, 51–59.
| Crawling through time: transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics.Crossref | GoogleScholarGoogle Scholar |
Meyer, C. P., Geller, J. B., and Paulay, G. (2005). Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125.
| Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods.Crossref | GoogleScholarGoogle Scholar |
MolluscaBase (2018). Phanerophthalmus A. Adams, 1850. Accessed through: World Register of Marine Species at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=599465 on 2018-10-09 [Accessed 10 October 2018]
Nakano, R. (2004). ‘Opisthobranchs of Japan Islands.’ (Rutles: Tokyo, Japan.)
Oskars, T. R., Bouchet, P., and Malaquias, M. A. (2015). A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers. Molecular Phylogenetics and Evolution 89, 130–150.
| A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers.Crossref | GoogleScholarGoogle Scholar |
Palumbi, S. R., Martin, A., Roman, S., McMillan, W., Stice, L., and Grabowski, G. (1991). ‘The Simple Fool’s Guide to PCR.’ (Department of Zoology and Kewalo Laboratory.) Available at palumbi.stanford.edu/SimpleFoolsMaster.pdf.
Paulay, G., and Meyer, C. (2006). Dispersal and divergence across the greatest ocean region: do larvae matter? Integrative and Comparative Biology 46, 269–281.
| Dispersal and divergence across the greatest ocean region: do larvae matter?Crossref | GoogleScholarGoogle Scholar |
Pease, W. H. (1861). Descriptions of new species of Mollusca from the Pacific Islands. In ‘Proceedings of the Zoological Society of London’. pp. 242–247.
Pease, W. H. (1868). Descriptions of marine Gastropodae inhabiting Polynesia. American Journal of Conchology 4, 71–80.
Pilsbry, H. A. (1896). ‘Manual of Conchology, Structural and Systematic, Vol. 16.’ (Academy of Natural Sciences of Philadelphia: Philadelphia, PA.)
Pittman, C., and Fiene, P. (2016). Phanerophthalmus cf. albocollaris Heller & Thompson, 1983. Sea Slugs of Hawaii. Available at http://seaslugsofhawaii.com/species/Phanerophthalmus-albocollaris-a.html.
Pruvot-Fol, A. (1931). Notes de systématique sur les opisthobranches (suite). Bulletin du Muséum National d’Histoire Naturelle 3, 746–755.
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
| ABGD, automatic barcode gap discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar |
Quoy, J. R. C., and Gaimard, J. P. (1833). ‘Voyage de découvertes de L’Astrolabe exécuté par ordre du Roi, pendant les années 1826-1827-1828-1829 sous le commandement de M. J. D’Urville.’ (Ed J. Tastu.) Zoologie 2 (Plus Atlas: Paris.)
Rafinesque, C. S. (1814). ‘Précis des Découvertes et Travaux Somiologiques de Mr. C. S. Rafinesque-Schmaltz entre 1800 et 1814; ou Choix Raisonné de ses Principales Découvertes en Zoologie et en Botanique, pour Servir d’Introduction à ses Ouvrages Futurs.’ (Royale Typographie Militaire: Palerme.)
Rambaut, A. (2007). FigTree v1.4.2. Computer program and documentation distributed by the author and available at http://tree.bio.ed.ac.uk/software/figtree/
Rambaut, A., Suchard, M. A., and Drummond, A. J. (2014). Tracer v1.6. Computer program and documentation distributed by the author and available at http://tree.bio.ed.ac.uk/software/tracer/
Reid, D. G., Lal, K., Mackenzie-Dodds, J., Kaligis, F., Littlewood, D. T. J., and Williams, S. T. (2006). Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific. Journal of Biogeography 33, 990–1006.
| Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo-West Pacific.Crossref | GoogleScholarGoogle Scholar |
Risbec, J. (1928). Contribution à l’étude des nudibraches Néo-Calédoniens. Faune des Colonies Françaises 2, 1–328.
Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar |
Rosenberg, G. (2015). Phanerophthalmus albocollaris Heller & Thompson, 1983. World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=599467 [Accessed 17 March 2016].
Rudman, W. B. (1972). The herbivorous opisthobranch genera Phanerophthalmus A. Adams and Smaragdinella A. Adams. The Journal of Molluscan Studies 40, 189–210.
Rüppell, E., and Leuckart, F. S. (1830). Mollusca. In ‘Atlas zu der Reise im Nördlichen Afika von Edvard Rüppell. Erste Abtheilung, Zoologi. Neue Wirbellose Thiere des Rothen Meers’. pp. 15−22 (1828); 23−47 (1830). (H.L. Brönner: Frankfurt, Germany).
Smith, E. A. (1903). ‘The Fauna and Geography of the Maldive and Laccadive Archipelagoes: Being the Account of the Work Carried on and of the Collections Made by an Expedition During the Years 1899 and 1900. Vol. 2, Part 2.’ pp. 589−630 with plates. (Cambridge: University Press.)
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar |
Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |
Tibiriçá, Y., and Malaquias, M. A. E. (2017). The bubble snails (Gastropoda, Heterobranchia) of Mozambique: an overlooked biodiversity hotspot. Marine Biodiversity 47, 791–811.
| The bubble snails (Gastropoda, Heterobranchia) of Mozambique: an overlooked biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Valdés, A., and Héros, V. (1998). The types of recent and certain fossil opisthobranch molluscs in the Muséum national d’Histoire naturelle, Paris. Zoosystema 20, 613–694.
Vogler, R. E. (2013). The radula of the extinct freshwater snail Aylacostoma stigmaticum (Caenogastropoda: Thiaridae) from Argentina and Paraguay. Malacologia 56, 329–332.
| The radula of the extinct freshwater snail Aylacostoma stigmaticum (Caenogastropoda: Thiaridae) from Argentina and Paraguay.Crossref | GoogleScholarGoogle Scholar |
Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
| Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |
Wheeler, Q. D., and Meier, R. (2000). ‘Species Concepts and Phylogenetic Theory: a Debate.’ (Columbia University Press: New York, NY.)
Willan, R. C. (2010). Smaragdinellidae. In ‘Philippine Marine Mollusks Vol. III’. (Ed. G. T. Poppe.) pp. 110–111, pl. 746. (ConchBooks: Germany.)
Williams, S., Apte, D., Ozawa, T., Kaligis, F., and Nakano, T. (2011). Speciation and dispersal along continental coastlines and island arcs in the Indo-West Pacific turbinid gastropod genus Lunella. Evolution 65, 1752–1771.
| Speciation and dispersal along continental coastlines and island arcs in the Indo-West Pacific turbinid gastropod genus Lunella.Crossref | GoogleScholarGoogle Scholar |
Wilson, N. G., and Kirkendale, L. A. (2016). Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps. Invertebrate Systematics 30, 86–94.
| Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps.Crossref | GoogleScholarGoogle Scholar |
Winckworth, R. (1942). A note on Rang, Leuckart and Ehrenberg. Journal of Molluscan Studies 24, 290.
Yonow, N. (2000). Red Sea Opisthobranchia 4: the orders of Cephalaspidea, Anaspidea, Notospidea and Nudibranchia: Dendronotacea and Aeolidacea. Fauna of Arabia 18, 87–132.
Yonow, N. (2008). ‘Sea Slugs of the Red Sea.’ (Pensoft Publishers: Sofia, Bulgaria.)