Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Trigonocephalotrema (Digenea : Haplosplanchnidae), a new genus for trematodes parasitising fishes of two Indo-West Pacific acanthurid genera

Daniel C. Huston A B , Scott C. Cutmore A and Thomas H. Cribb A
+ Author Affiliations
- Author Affiliations

A The University of Queensland, School of Biological Sciences, St Lucia, Qld 4072, Australia.

B Corresponding author. Email: Daniel.Huston@uqconnect.edu.au

Invertebrate Systematics 32(4) 759-773 https://doi.org/10.1071/IS17075
Submitted: 8 September 2017  Accepted: 25 November 2017   Published: 27 July 2018

Abstract

The Great Barrier Reef is the largest coral reef ecosystem on the planet and supports a diverse community of marine fishes, as well as the organisms that parasitise them. Although the digenetic trematodes that parasitise fishes of the Great Barrier Reef have been studied for over a century, the species richness and diversity of many trematode lineages is yet to be explored. Trigonocephalotrema, gen. nov. is proposed to accommodate three new species, Trigonocephalotrema euclidi, sp. nov., T. hipparchi, sp. nov. and T. sohcahtoa, sp. nov., parasitic in fishes of Naso Lacepède and Zebrasoma Swainson (Acanthuridae) in the tropical Pacific. Species of Trigonocephalotrema are characterised with morphological and molecular data (18S rRNA, ITS2 and 28S rRNA). Species of Trigonocephalotrema are morphologically distinguished from all other haplosplanchnid lineages by having terminal, triangular, plate-like oral suckers. With the inclusion of the new molecular data, Bayesian inference and maximum likelihood analyses of the Haplosplanchnidae Poche, 1926 recovered identical tree topologies and demonstrated Trigonocephalotrema as a well-supported monophyletic group. Although species of Trigonocephalotrema are differentiated from all other haplosplanchnid lineages on the basis of morphology, species within the genus are morphologically cryptic; thus, accurate species identification will require inclusion of host and molecular data. Species of Trigonocephalotrema cannot be assigned to a recognised subfamily within the Haplosplanchnidae using either morphological or molecular data and would require the erection of a new subfamily to accommodate them. However, we find little value in the use of subfamilies within the Haplosplanchnidae, given that there are so few taxa in the family, and herein propose that their use be avoided.

Additional keywords: Platyhelminthes, Trematode, Great Barrier Reef, Naso, Zebrasoma.


References

Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J., and Förster, F. (2015). ITS2 database V: twice as much. Molecular Biology and Evolution 32, 3030–3032.
ITS2 database V: twice as much.Crossref | GoogleScholarGoogle Scholar |

Besprozvannykh, V. V., Atopkin, D. M., Ngo, H. D., Ermolenko, A. V., Ha, N. V., Tang, N. V., and Beloded, A. Yu. (2016). Morphometric and molecular analyses of two digenean species from the mullet: Haplosplanchnus pachysomus (Eysenhardt, 1892) from Vietnam and Provitellotrema crenimugilis Pan, 1984 from the Russian southern Far East. Journal of Helminthology 90, 238–244.
Morphometric and molecular analyses of two digenean species from the mullet: Haplosplanchnus pachysomus (Eysenhardt, 1892) from Vietnam and Provitellotrema crenimugilis Pan, 1984 from the Russian southern Far East.Crossref | GoogleScholarGoogle Scholar |

Blasco-Costa, I. (2009). Taxonomy of the Haploporinae Nicoll, 1914 and Bunocotylinae Dollfus, 1950 (Digenea) from Mediterranean mullets (Teleostei): morphological and molecular approaches. PhD thesis, Department of Zoology, Universidad de Valencia, Valencia, Spain.

Blasco-Costa, I., Cutmore, S. C., Miller, T. L., and Nolan, M. J. (2016). Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology 93, 295–306.
Molecular approaches to trematode systematics: ‘best practice’ and implications for future study.Crossref | GoogleScholarGoogle Scholar |

Bray, R. A., and Cribb, T. H. (2015). Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms? Parasitology 142, 125–133.
Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms?Crossref | GoogleScholarGoogle Scholar |

Bray, R. A., Diaz, P. E., and Cribb, T. H. (2016). Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans. Systematic Parasitology 93, 223–235.
Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans.Crossref | GoogleScholarGoogle Scholar |

Cable, R. (1954). Studies on marine digenetic trematodes of Puerto Rico. The life cycle in the family Haplosplanchnidae. The Journal of Parasitology 40, 71–76.
Studies on marine digenetic trematodes of Puerto Rico. The life cycle in the family Haplosplanchnidae.Crossref | GoogleScholarGoogle Scholar |

Cribb, T. H., and Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology 76, 1–7.
Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes.Crossref | GoogleScholarGoogle Scholar |

Cribb, T. H., and Bray, R. A. (2011). Trematode families and genera: have we found them all? Trends in Parasitology 27, 149–154.
Trematode families and genera: have we found them all?Crossref | GoogleScholarGoogle Scholar |

Cribb, T. H., and Gibson, D. I. (2010). Haplosplanchnidae Poche, 1926. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=108423. [Accessed 21 August 2017.]

Cribb, T. H., Bray, R. A., Littlewood, D. T. J., Pichelin, S. P., and Herniou, E. A. (2001). The Digenea. In ‘Interrelationships of the Platyhelminthes’. (Eds D.T.J. Littlewood and R.A. Bray.) pp. 168–185. (Taylor & Francis: London.)

Cribb, T. H., Adlard, R. D., Bray, R. A., Sasal, P., and Cutmore, S. C. (2014a). Biogeography of tropical Indo-West Pacific parasites: a cryptic species of Transversotrema and evidence for rarity of Transversotrematidae (Trematoda) in French Polynesia. Parasitology International 63, 285–294.
Biogeography of tropical Indo-West Pacific parasites: a cryptic species of Transversotrema and evidence for rarity of Transversotrematidae (Trematoda) in French Polynesia.Crossref | GoogleScholarGoogle Scholar |

Cribb, T. H., Bott, N. J., Bray, R. A., McNamara, M. K., Miller, T. L., Nolan, M. J., and Cutmore, S. C. (2014b). Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes. International Journal for Parasitology 44, 929–939.
Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes.Crossref | GoogleScholarGoogle Scholar |

Cribb, T. H., Bray, R. A., Diaz, P. E., Huston, D. C., Kudlai, O., Martin, S. B., Yong, R. Q.-Y., and Cutmore, S. C. (2016). Trematodes of fishes of the Indo-west Pacific: told and untold richness. Systematic Parasitology 93, 237–247.
Trematodes of fishes of the Indo-west Pacific: told and untold richness.Crossref | GoogleScholarGoogle Scholar |

Curran, S. S., Tkach, V. V., and Overstreet, R. M. (2013). Molecular evidence for two cryptic species of Homalometron (Digenea: Apocreadiidae) in freshwater fishes of the southeastern United States. Comparative Parasitology 80, 186–195.
Molecular evidence for two cryptic species of Homalometron (Digenea: Apocreadiidae) in freshwater fishes of the southeastern United States.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar |

Fares, A., and Maillard, C. (1975). Cycle évolutif de Haplosplanchnus pachysomus (Eysenhardt, 1829), Looss, 1902 (Trematoda, Haplosplanchnidae), parasite de Mugilidés (Teleostei). Bulletin du Muséum National d’Histoire Naturelle. Paris, Series 3. 312, 837–844.

Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., and Kostadinova, A. (2014). Echinostomarevolutum’ (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors 7, 520.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |

Hunter, J. A., and Cribb, T. H. (2012). A cryptic complex of species related to Transversotrema licinum Manter, 1970 from fishes of the Indo-West Pacific, including descriptions of ten new species of Transversotrema Witenberg, 1944 (Digenea: Transversotrematidae). Zootaxa 3176, 1–44.

Huston, D. C., Cutmore, S. C., and Cribb, T. H. (2016). The life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905. Systematic Parasitology 93, 653–665.
The life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905.Crossref | GoogleScholarGoogle Scholar |

Huston, D. C., Cutmore, S. C., and Cribb, T. H. (2017). Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp. Acta Parasitologica 62, 502–512.
Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp.Crossref | GoogleScholarGoogle Scholar |

Jones, A. (2005). Family Cladorchiidae Fischoeder, 1901. In ‘Keys to the Trematoda. Volume 2’. (Eds A. Jones, R.A. Bray and D.I. Gibson.) pp. 257–317. (CABI Publishing and the Natural History Museum: Wallingford, UK.)

Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., and Wolf, M. (2009). 5.8S–28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50–57.
5.8S–28S rRNA interaction and HMM-based ITS2 annotation.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.

Linton, E. (1910). Helminth fauna of the Dry Tortugas. II. Trematodes. Papers from the Tortugas Laboratory of the Carnegie Institute of Washington 4, 11–98.

Littlewood, D. T. J., Bray, R. A., and Waeschenbach, A. (2015). Phylogenetic patterns of diversity in cestodes and trematodes. In ‘Parasite Diversity and Diversification: Evolutionary Ecology meets Phylogenetics’. (Eds S. Morand, B. Krasnov and D.T.J. Littlewood.) pp. 304–319. (Cambridge University Press: Cambridge, UK.)

Lu, J. (1995). Notes on digenetic trematodes parasitic in fishes near Shallow Sea in Guangdong Province, China III. Three new species, two new genera and one new subfamily of Digenea. Dong Wu Fen Lei Xue Bao 20, 141–152.

Machida, M., and Uchida, A. (1990). Trematodes from unicornfishes of Japanese and adjacent waters. Memoirs of the National Science Museum, Tokyo 23, 69–81.

Madhavi, R. (2005). Superfamily Haplosplanchnoidea Poche, 1926. In ‘Keys to the Trematoda. Volume 2’. (Eds A. Jones, R.A. Bray and D.I. Gibson.) pp. 175–184. (CABI Publishing and the Natural History Museum: Wallingford, UK.)

Manter, H. W. (1947). The digenetic trematodes of marine fishes of Tortugas, Florida. American Midland Naturalist 38, 257–416.
The digenetic trematodes of marine fishes of Tortugas, Florida.Crossref | GoogleScholarGoogle Scholar |

Manter, H. W. (1961). Studies on digenetic trematodes of fishes of Fiji. I. Families Haplosplanchnidae, Bivesiculidae, and Hemiuridae. Proceedings of the Helminthological Society of Washington 28, 67–74.

Martin, S. B., Cutmore, S. C., and Cribb, T. H. (2018). Revision of Podocotyloides Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of Pedunculacetabulum Yamaguti, 1934, and the first naming of a cryptic opecoelid species. Systematic Parasitology 95, 1–31.
Revision of Podocotyloides Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of Pedunculacetabulum Yamaguti, 1934, and the first naming of a cryptic opecoelid species.Crossref | GoogleScholarGoogle Scholar |

McNamara, M. K. A., Miller, T. L., and Cribb, T. H. (2014). Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific. International Journal for Parasitology 44, 37–48.
Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific.Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010a). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA’, pp. 1–8. (Institute of Electrical and Electronics Engineers: New Jersey, USA)

Miller, T. L., Adlard, R. D., Bray, R. A., Justine, J.-L., and Cribb, T. H. (2010b). Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Systematic Parasitology 77, 185–204.
Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific.Crossref | GoogleScholarGoogle Scholar |

Nahhas, F. M., and Cable, R. (1964). Digenetic and aspidogastrid trematodes from marine fishes of Curaçao and Jamaica. Tulane Studies in Zoology 11, 169–228.
Digenetic and aspidogastrid trematodes from marine fishes of Curaçao and Jamaica.Crossref | GoogleScholarGoogle Scholar |

Nahhas, F. M., Rhodes, D. Y., and Seeto, J. (1997). Digenetic trematodes of marine fishes from Suva, Fiji: Family Haplosplanchnidae Poche, 1926: Description of new species, a review and an update. Marine Studies. University of the South Pacific Technical Report Series 97/4.

Nolan, M. J., and Cribb, T. H. (2005). The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology 60, 101–163.
The use and implications of ribosomal DNA sequencing for the discrimination of digenean species.Crossref | GoogleScholarGoogle Scholar |

Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., and Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733–755.
Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda).Crossref | GoogleScholarGoogle Scholar |

Pérez-del-Olmo, A., Kostadinova, A., and Gibson, D. I. (2016). The Mediterranean: high discovery rates for a well-studied trematode fauna. Systematic Parasitology 93, 249–256.
The Mediterranean: high discovery rates for a well-studied trematode fauna.Crossref | GoogleScholarGoogle Scholar |

Pérez-Ponce de León, G., and Nadler, S. A. (2010). What we don’t recognize can hurt us: a plea for awareness about cryptic species. The Journal of Parasitology 96, 453–464.
What we don’t recognize can hurt us: a plea for awareness about cryptic species.Crossref | GoogleScholarGoogle Scholar |

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., and Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369–371.
Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies.Crossref | GoogleScholarGoogle Scholar |

Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters 7, 241–244.
Uneven distribution of cryptic diversity among higher taxa of parasitic worms.Crossref | GoogleScholarGoogle Scholar |

Pritchard, M. H., and Manter, H. W. (1961). Studies on digenetic trematodes of Hawaiian fishes: family Haplosplanchnidae. Proceedings of the Helminthological Society of Washington 28, 191–197.

Randall, J. E. (2002). ‘Surgeonfishes of Hawai’i and the World.’ (Bishop Museum Press: Honolulu, Hawai’i.)

Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G., and Nadler, S. A. (2010). Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of middle-American cichlids. International Journal for Parasitology 40, 471–486.
Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of middle-American cichlids.Crossref | GoogleScholarGoogle Scholar |

Rima, M., Marzoug, D., Pérez-del-Olmo, A., Kostadinova, A., Bouderbala, M., and Georgieva, S. (2017). New molecular and morphological data for opecoelid digeneans in two Mediterranean sparid fishes with descriptions of Macvicaria gibsoni n. sp. and M. crassigula (Linton, 1910) (sensu stricto). Systematic Parasitology 94, 739–763.
New molecular and morphological data for opecoelid digeneans in two Mediterranean sparid fishes with descriptions of Macvicaria gibsoni n. sp. and M. crassigula (Linton, 1910) (sensu stricto).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Rosas-Valdez, R., Choudhury, A., and Pérez-Ponce de León, G. (2011). Molecular prospecting for cryptic species in Phyllodistomum lacustri (Platyhelminthes, Gorgoderidae). Zoologica Scripta 40, 296–305.
Molecular prospecting for cryptic species in Phyllodistomum lacustri (Platyhelminthes, Gorgoderidae).Crossref | GoogleScholarGoogle Scholar |

Sambrook, J., and Russell, D. (2001). ‘Molecular Cloning: a Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY).

Siddiqi, A. H., and Cable, R. M. (1960). Digenetic trematodes of marine fishes of Puerto Rico. Scientific Survey of Porto Rico and the Virgin Islands 17, 257–369.

Skinner, R. (1975). Parasites of the striped mullet, Mugil cephalus, from Biscayne Bay, Florida, with descriptions of a new genus and three new species of trematodes. Bulletin of Marine Science 25, 318–345.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Tang, Z., and Lin, X. (1978). Three new species and one new genus of trematodes belonging to the family Haplosplanchnidae Poche, 1926. Dong Wu Xue Bao 24, 203–211.

Tkach, V., Pawlowski, J., and Mariaux, J. (2000). Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology 30, 83–93.
Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences.Crossref | GoogleScholarGoogle Scholar |

Yamaguti, S. (1970). ‘Digenetic Trematodes of Hawaiian Fishes.’ (Keigaku Publishing Co: Tokyo.)