Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Integrative taxonomy unravels the species diversity of Parachristianella (Cestoda : Trypanorhyncha) from both sides of the Panamanian isthmus

Bjoern C. Schaeffner A B and Fernando P. L. Marques A
+ Author Affiliations
- Author Affiliations

A Instituto de Biociências, Universidade de São Paulo, Rua do Matão 321, 05508-900 Cidade Universitária, São Paulo, Brazil.

B Corresponding author. Email: b.schaeffner@unimelb.edu.au

Invertebrate Systematics 32(2) 278-318 https://doi.org/10.1071/IS17008
Submitted: 20 January 2017  Accepted: 20 July 2017   Published: 22 March 2018

Abstract

The uplift of the Panamanian isthmus in the Pliocene caused the termination of gene flow among members of many ancestral populations of marine lineages leading the diversification of geminate species confined to opposite sides of Central America. This palaeogeographical event has been evoked to explain the diversification of few lineages of batoids with trans-isthmian distribution. As such, there is the expectation that this vicariance event also affected lineages of parasites associated with them. Our study suggests that this event can explain the diversification of Parachristianella Dollfus, 1946 (Trypanorhyncha : Eutetrarhynchidae) in the Caribbean Sea and tropical eastern Pacific Ocean. We provide molecular, morphological and biogeographical evidence to recognise five lineages within this genus inhabiting the coastal waters of Panama, including P. parva Campbell & Beveridge, 2007 and four new species: P. mendozai, sp. nov., P. kuchtai, sp. nov., P. campbelli, sp. nov. and P. soldanovae, sp. nov. These species can be diagnosed by unambiguous sets of molecular characters. The morphological cohesiveness of sister species, which most likely diverged from around 3 million years ago through the uplift of the Panamanian isthmus, suggests that the traditional emphasis on the tentacular armature to circumscribe species within trypanorhynchs might underestimate the diversity of recently diverged lineages.

Additional keywords: biogeography, Caribbean Sea, eastern Pacific Ocean, molecular phylogeny, morphology, new species, Panama, parasites, stingrays.


References

Aschliman, N. C., Claeson, K. M., and McEachran, J. D. (2012). Phylogeny of Batoidea. In ‘Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A. Musick and M. R. Heithaus.) pp. 57–95. (CRC Press: Boca Raton, FL.) 10.1201/b11867-5

Bermingham, E., and Lessios, H. A. (1993). Rate variation of proteins and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America 90, 2734–2738.
Rate variation of proteins and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlSlsrw%3D&md5=012f4b1ed3c4802a262e45965d72ddc9CAS |

Bermingham, E., McCafferty, S. S., and Martin, A. P. (1997). Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In ‘Molecular Systematics of Fishes’. (Eds T. D. Kocher and C. A. Stepien.) pp. 113–128. (Academic Press: San Diego, CA.) 10.1016/b978-012417540-2/50009-9

Beveridge, I. (1990). Taxonomic revision of Australian Eutetrarhynchidae Guiart (Cestoda: Trypanorhyncha). Invertebrate Taxonomy 4, 785–845.
Taxonomic revision of Australian Eutetrarhynchidae Guiart (Cestoda: Trypanorhyncha).Crossref | GoogleScholarGoogle Scholar |

Beveridge, I., and Justine, J.-L. (2007). Re-descriptions of four species of Otobothrium Linton, 1890 (Cestoda: Trypanorhyncha), including new records from Australia, New Caledonia and Malaysia, with the description of O. parvum n. sp. Zootaxa 1587, 1–25.

Beveridge, I., Neifar, L., and Euzet, L. (2004). Eutetrarhynchid cestodes from Atlantic and Mediterranean elasmobranch fishes, with the description of two new species of Dollfusiella Campbell & Beveridge, 1994 and re-descriptions of Prochristianella papillifer (Poyarkoff, 1909) Dollfus, 1957 and Parachristianella trygonis Dollfus, 1946. Systematic Parasitology 59, 81–102.
Eutetrarhynchid cestodes from Atlantic and Mediterranean elasmobranch fishes, with the description of two new species of Dollfusiella Campbell & Beveridge, 1994 and re-descriptions of Prochristianella papillifer (Poyarkoff, 1909) Dollfus, 1957 and Parachristianella trygonis Dollfus, 1946.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crgvVemtw%3D%3D&md5=d907ba49c3c54fd86f0684ebbfb79c17CAS |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic diversity as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic diversity as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795–803.
The limits of amino acid sequence data in angiosperm phylogenetic reconstruction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVKntrY%3D&md5=bdc0ca4ef422c98ffcf6bc03a5cd4815CAS |

Bremer, K. (1994). Branch support and tree stability. Cladistics 10, 295–304.
Branch support and tree stability.Crossref | GoogleScholarGoogle Scholar |

Caira, J. N., and Jensen, K. (2014). A digest of elasmobranch tapeworms. The Journal of Parasitology 100, 373–391.
A digest of elasmobranch tapeworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKltrvM&md5=543f16cbb595769954036d5784ed80a0CAS |

Caira, J. N., Jensen, K., Waeschenbach, A., Olson, P. D., and Littlewood, D. T. J. (2014). Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44, 55–73.
Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2rt77N&md5=109110699171559949e1a5b7593e0a1fCAS |

Campbell, R. A., and Beveridge, I. (1994). Order Trypanorhyncha Diesing 1863. In ‘Keys to the Cestode Parasites of Vertebrates’. (Eds L. F. Khalil, A. Jones and R. A. Bray.) pp. 51–148. (CABI: Wallingford, UK.)

Campbell, R. A., and Beveridge, I. (2007). A new species and new records of Parachristianella Dollfus, 1946 (Cestoda: Trypanorhyncha) from the Gulf of California, Mexico. Comparative Parasitology 74, 218–228.
A new species and new records of Parachristianella Dollfus, 1946 (Cestoda: Trypanorhyncha) from the Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |

Campbell, R. A., and Carvajal, J. (1975). A revision of some trypanorhynchs from the western north Atlantic described by Edwin Linton. The Journal of Parasitology 61, 1016–1022.
A revision of some trypanorhynchs from the western north Atlantic described by Edwin Linton.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE28%2FntFehug%3D%3D&md5=f8357303cd9005f087d11c5b977c85f2CAS |

Carvajal, J., Campbell, R. A., and Cornford, E. M. (1976). Some trypanorhynch cestodes from Hawaiian fishes, with descriptions of four new species. The Journal of Parasitology 62, 70–77.
Some trypanorhynch cestodes from Hawaiian fishes, with descriptions of four new species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287ksFOquw%3D%3D&md5=823a056d5b412a57dde675789c35c780CAS |

Carvalho, M. R., Loboda, T. S., and Da Silva, J. P. C. B. (2016). A new subfamily, Styracurinae, and new genus, Styracura, for Himantura schmardae (Werner, 1904) and Himantura pacifica (Beebe & Tee-Van, 1941) (Chondrichthyes: Myliobatiformes). Zootaxa 4175, 201–221.
A new subfamily, Styracurinae, and new genus, Styracura, for Himantura schmardae (Werner, 1904) and Himantura pacifica (Beebe & Tee-Van, 1941) (Chondrichthyes: Myliobatiformes).Crossref | GoogleScholarGoogle Scholar |

Chervy, L. (2009). Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitologica 56, 199–230.
Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008.Crossref | GoogleScholarGoogle Scholar |

Coates, A. G. (1997). The forging of Central America. In ‘Central America: a Natural and Cultural History’. (Ed. A. G. Coates.) pp. 1–37. (Yale University Press: New Haven, CT.)

Collins, L. S., and Coates, A. G. (1999). A paleobiotic survey of Caribbean faunas from the Neogene of the Isthmus of Panama. In ‘Bulletins of American Paleontology’, no. 357, pp. 351.

Collins, L. S., Budd, A. F., and Coates, A. G. (1996). Earliest evolution associated with closure of the tropical American seaway. Proceedings of the National Academy of Sciences of the United States of America 93, 6069–6072.
Earliest evolution associated with closure of the tropical American seaway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Ojtrs%3D&md5=36442c561a44b4db92e669c916bcccb0CAS |

Cunningham, C. W., and Collins, T. M. (1994). Developing model systems for molecular biogeography: vicariance and interchange in marine invertebrates. In ‘Molecular Ecology and Evolution: Approaches and Applications’. (Eds B. Schierwater, B. Streit, G. P. Wagner and R. Desalle.) pp. 405–433. (Birkhauser Verlag: Switzerland.) 10.1007/978-3-0348-7527-1_24

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=8455a3ff18c54ee00d48a1421d4dba7aCAS |

Dayrat, B. (2005). Toward integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Toward integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

de Carvalho, M. R., and Lovejoy, N. R. (2011). Morphological and phylogenetic relationships of a remarkable new genus and two new species of Neotropical freshwater stingrays from the Amazon basin (Chondrichthyes: Potamotrygonidae). Zootaxa 2776, 13–48.

Dollfus, R. (1942). Études critiques sur les Tétrarhynques du Muséum de Paris. Archives du Muséum National d’Histoire Naturelle 19, 198–217.

Dollfus, R. (1946). Notes diverses sur des Tétrarhynques. Archives du Muséum National d’Histoire Naturelle 22, 170–220.

Dollfus R. 1969 De quelques cestodes tétrarhynques (Hétéracanthes et Pécilacanthes) récoltés chez des poissons de la Mediterraneé. Vie et Milieu 20 491 542

Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Research 8, 186–194.
Base-calling of automated sequencer traces using Phred II. Error probabilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWlu7g%3D&md5=4cefc6c0a7d8ad6256c0d14f51e18270CAS |

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated sequencer traces using Phred I. Accuracy assessment. Genome Research 8, 175–185.
Base-calling of automated sequencer traces using Phred I. Accuracy assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWlu78%3D&md5=9c55cf87b27dff2ce22474c4b2142613CAS |

Feigenbaum, D. L. (1975). Parasites of the commercial shrimp Penaeus vannamei Boone and Penaeus brasiliensis Latreille. Bulletin of Marine Science 25, 491–514.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=009fb0981a512fd7fdf1010a026c7977CAS |

Fonseca, G., Derycke, S., and Moens, T. (2008). Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society. Linnean Society of London 94, 737–753.
Integrative taxonomy in two free-living nematode species complexes.Crossref | GoogleScholarGoogle Scholar |

Froese, R., and Pauly, D. (2016). Editors. 2016. ‘FishBase.’ Available at http://fishbase.org/

Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa 2032, 1–38.

Goloboff, P. A. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.
Analyzing large data sets in reasonable times: solutions for composite optima.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Goodman, M., Olson, C. B., Beeber, J. E., and Czelusniak, J. (1982). New perspectives in the molecular biological analysis of mammalian phylogeny. Annales Zoologici Fennici 169, 19–35.

Gordon, D., Abajian, C., and Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Research 8, 195–202.
Consed: a graphical tool for sequence finishing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlWksr0%3D&md5=4dcbb357284c830c22055cec43352642CAS |

Gordon, D., Desmarais, C., and Green, P. (2001). Automated finishing with autofinish. Genome Research 11, 614–625.
Automated finishing with autofinish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFOqtbg%3D&md5=6c1d693cd1982aaee5492abc84a0426dCAS |

Grant, T., and Kluge, A. G. (2008a). Credit where credit is due: the Goodman–Bremer support metric. Molecular Phylogenetics and Evolution 49, 405–406.
Credit where credit is due: the Goodman–Bremer support metric.Crossref | GoogleScholarGoogle Scholar |

Grant, T., and Kluge, A. G. (2008b). Clade support measures and their adequacy. Cladistics 24, 1051–1064.
Clade support measures and their adequacy.Crossref | GoogleScholarGoogle Scholar |

Griffith, H. (1987). Phylogenetic relationships in the genus Dissodactylus Smith, 1870 (Crustacea: Brachyura: Pinnotheridae). Canadian Journal of Zoology 65, 2292–2310.
Phylogenetic relationships in the genus Dissodactylus Smith, 1870 (Crustacea: Brachyura: Pinnotheridae).Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=51032c35c9b55c2e0a0ae6daa653f17bCAS |

Haseli, M., Malek, M., and Palm, H. W. (2010). Trypanorhynch cestodes of elasmobranchs from the Persian Gulf. Zootaxa 2492, 28–48.
Trypanorhynch cestodes of elasmobranchs from the Persian Gulf.Crossref | GoogleScholarGoogle Scholar |

Healy, C. J., Caira, J. N., Jensen, K., Webster, B. L., and Littlewood, D. T. J. (2009). Proposal for a new tapeworm order, Rhinebothriidea. International Journal for Parasitology 39, 497–511.
Proposal for a new tapeworm order, Rhinebothriidea.Crossref | GoogleScholarGoogle Scholar |

Heinz, M. L., and Dailey, M. D. (1974). The Trypanorhyncha (Cestoda) of elasmobranch fishes from southern California and northern Mexico. Proceedings of the Helminthological Society of Washington 41, 161–169.

Heneberg, P., Sitko, J., and Bizos, J. (2015). Integrative taxonomy of central European parasitic flatworms of the family Prosthogonimidae Lühe, 1909 (Trematoda: Plagiorchiida). Parasitology International 64, 264–273.
Integrative taxonomy of central European parasitic flatworms of the family Prosthogonimidae Lühe, 1909 (Trematoda: Plagiorchiida).Crossref | GoogleScholarGoogle Scholar |

Howard, D. J., Berlocher, S., and Lessios, H. A. (1998). The first stage of speciation as seen in organisms separated by the Isthmus of Panama. In ‘Endless Forms: Species and Speciation’. (Eds D. J. Howard and S. Berlocher.) pp. 186–201. (Oxford University Press: Oxford, UK.)

Jackson, J. B. C., Budd, A. F., and Coates, A. G. (1996). ‘Evolution and Environment in Tropical America.’ (University of Chicago Press: Chicago, IL.)

Jensen, K. (2005). Tapeworms of Elasmobranchs (Part I). A monograph on the Lecanicephalidea (Platyhelminthes, Cestoda). Bulletin of the University of Nebraska State Museum 18, 1–241.

Jordan, D. S. (1908). The law of geminate species. American Naturalist 42, 73–80.
The law of geminate species.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=46a816f053c6a2ce9deedd35f62e0b21CAS |

Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38, 7–25.
A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes).Crossref | GoogleScholarGoogle Scholar |

Knowlton, N., and Weigt, L. A. (1998). New dates and new rates for divergence across the Isthmus of Panama. Proceedings. Biological Sciences 265, 2257–2263.
New dates and new rates for divergence across the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar |

Kovacs, K. J., and Schmidt, J. D. (1980). Two new species of cestode (Trypanorhyncha, Eutetrarhynchidae) from the yellow-spotted stingray Urolophus jamaicensis. Proceedings of the Helminthological Society of Washington 47, 10–14.

Kruse, D. N. (1959). Parasites of the commercial shrimps Penaeus aztecus Ives, P. duroarum Burkenroad and P. setiferus (Linnaeus). Tulane Studies in Zoology 7, 123–144.
Parasites of the commercial shrimps Penaeus aztecus Ives, P. duroarum Burkenroad and P. setiferus (Linnaeus).Crossref | GoogleScholarGoogle Scholar |

Larsen, K. (2001). Morphological and molecular investigation of polymorphism and cryptic species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates. Zoological Journal of the Linnean Society 131, 353–379.
Morphological and molecular investigation of polymorphism and cryptic species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates.Crossref | GoogleScholarGoogle Scholar |

Last, P. R., Naylor, G. J. P., and Manjaji-Matsumoto, B. M. (2016). A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights. Zootaxa 4139, 345–368.
A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights.Crossref | GoogleScholarGoogle Scholar |

Lee, M. S. Y., and Hugall, A. F. (2003). Partitioned likelihood support and the evaluation of data set conflict. Systematic Biology 52, 15–22.
Partitioned likelihood support and the evaluation of data set conflict.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FksFKgtw%3D%3D&md5=781a2032dcede886a390db15e8be02a0CAS |

Leigh, E. G., O’Dea, A., and Vermeij, G. J. (2014). Historical biogeography of the Isthmus of Panama. Biological Reviews of the Cambridge Philosophical Society 89, 148–172.
Historical biogeography of the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar |

Lessios, H. A. (1979). Use of Panamanian sea urchins to test the molecular clock. Nature 280, 599–601.
Use of Panamanian sea urchins to test the molecular clock.Crossref | GoogleScholarGoogle Scholar |

Lessios, H. A. (1984). Possible prezygotic reproductive isolation in sea urchins separated by the Isthmus of Panama. Evolution 38, 1144–1148.
Possible prezygotic reproductive isolation in sea urchins separated by the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1cnisVSqug%3D%3D&md5=e0c1d8a40706b14c12689aafabb51acbCAS |

Lessios, H. A. (2008). The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology Evolution and Systematics 39, 63–91.
The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus.Crossref | GoogleScholarGoogle Scholar |

Littlewood, D. T. J., Smith, A. B., Clough, K. A., and Emson, R. H. (1997). The interrelationships of the echinoderm classes: morphological and molecular evidence. Biological Journal of the Linnean Society. Linnean Society of London 61, 409–438.
The interrelationships of the echinoderm classes: morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Lovejoy, N. R. (1996). Systematics of myliobatoid elasmobranchs: with emphasis on the phylogeny and historical biogeography of neotropical freshwater stingrays (Potamotrygonidae: Rajiformes). Zoological Journal of the Linnean Society 117, 207–257.
Systematics of myliobatoid elasmobranchs: with emphasis on the phylogeny and historical biogeography of neotropical freshwater stingrays (Potamotrygonidae: Rajiformes).Crossref | GoogleScholarGoogle Scholar |

Lovejoy, N. R., Birminghan, E., and Martin, A. P. (1998). South American rays came in with the sea. Nature 396, 421–422.
South American rays came in with the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvF2lsbY%3D&md5=a1f4c5f73e6eca11d574a86593cb7a6dCAS |

Machado, D. J. (2015). YBYRÁ facilitates comparison of large phylogenetic trees. BMC Bioinformatics 16, 204.
YBYRÁ facilitates comparison of large phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Marko, P. B. (2002). Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Molecular Biology and Evolution 19, 2005–2021.
Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFOnur8%3D&md5=8cd72cee6b3459d527f515fae7027d9cCAS |

Marques, F., Brooks, D. R., and Ureña, H. M. (1996). Two new species of tetraphyllidean cestodes in Himantura pacifica (Chondrichthyes: Myliobatiformes: Dasyatididae) from the northwest coast of Costa Rica. The Journal of Parasitology 82, 302–306.
Two new species of tetraphyllidean cestodes in Himantura pacifica (Chondrichthyes: Myliobatiformes: Dasyatididae) from the northwest coast of Costa Rica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287osFOksQ%3D%3D&md5=b40d34b844ba4769fb62fab00e09c582CAS |

McCartney, M. A., Keller, G., and Lessios, H. A. (2000). Dispersal barriers in tropical oceans and speciation of Atlantic and eastern Pacific Echinometra sea urchins. Molecular Ecology 9, 1391–1400.
Dispersal barriers in tropical oceans and speciation of Atlantic and eastern Pacific Echinometra sea urchins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCmu70%3D&md5=d264f6c30b4cef4111492328af02dbf0CAS |

Meireles, C. M., Czelusniak, J., Schneider, M. P. C., Muniz, J. A. P. C., Brigido, M. C., Ferreira, H. S., and Goodman, M. (1999). Molecular phylogeny of ateline New World monkeys (Platyrrhini, Atelinae) based on c-Globin gene sequences: evidence that Brachyteles is the sister group of Lagothrix. Molecular Phylogenetics and Evolution 12, 10–30.
Molecular phylogeny of ateline New World monkeys (Platyrrhini, Atelinae) based on c-Globin gene sequences: evidence that Brachyteles is the sister group of Lagothrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1KksLs%3D&md5=39b257acdf076595fdb62c1763b9d11bCAS |

Menoret, A., and Ivanov, V. A. (2014). Eutetrarhynchid trypanorhynchs (Cestoda) from elasmobranchs off Argentina, including the description of Dollfusiella taminii sp. n. and Parachristianella damiani sp. n., and amended description of Dollfusiella vooremi (São Celemente et Gomes, 1989). Folia Parasitologica 61, 411–431.
Eutetrarhynchid trypanorhynchs (Cestoda) from elasmobranchs off Argentina, including the description of Dollfusiella taminii sp. n. and Parachristianella damiani sp. n., and amended description of Dollfusiella vooremi (São Celemente et Gomes, 1989).Crossref | GoogleScholarGoogle Scholar |

Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, K. A. M., Straube, N., and Lakner, C. (2012a). Elasmobranch phylogeny: a mitochondrial estimate based on 595 species. In ‘Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A. Musick and M. R. Heithaus) pp. 31–56. (CRC Press: Boca Raton, FL.) 0.1201/b11867-4

Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, A. M., White, W. T., and Last, P. R. (2012b). A DNA sequence-based approach to the identification of shark and rays species and its implication of global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 367, 1–262.
A DNA sequence-based approach to the identification of shark and rays species and its implication of global elasmobranch diversity and parasitology.Crossref | GoogleScholarGoogle Scholar |

Nixon, K. C. (1999). The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The parsimony ratchet, a new method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Nixon, K. C., and Carpenter, G. H. (1996). On simultaneous analysis. Cladistics 12, 221–241.
On simultaneous analysis.Crossref | GoogleScholarGoogle Scholar |

O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., Finnegan, S., Gasparini, G. M., Grossman, E. L., Johnson, K. G., Keigwin, L. D., Knowlton, N., Leigh, E. G., Leonard-Pingel, J. S., Marko, P. B., Pyenson, N. D., Rachello-Dolmen, P. G., Soibelzon, E., Soibelzon, L., Todd, J. A., Vermeij, G. J., and Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances 2, e1600883.
Formation of the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar |

Padial, J. M., and de la Riva, I. (2009). Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura). Zoological Journal of the Linnean Society 155, 97–122.
Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura).Crossref | GoogleScholarGoogle Scholar |

Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 1–14.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar |

Page, R. D. M., and Charleston, M. A. (1998). Trees within trees: phylogeny and historical associations. Trends in Ecology & Evolution 13, 356–359.
Trees within trees: phylogeny and historical associations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itF2ltg%3D%3D&md5=887720cc2a550903a4e3da0192fe9cf6CAS |

Palm, H. W. (2004). ‘The Trypanorhyncha Diesing, 1863.’ (PKSPLIPB Press: Bogor, Indonesia)

Pante, E., Schoelinck, C., and Puillandre, N. (2014). From integrative taxonomy to species description: one step beyond. Systematic Biology 64, 152–160.
From integrative taxonomy to species description: one step beyond.Crossref | GoogleScholarGoogle Scholar |

Pintner, T. (1913). Vorarbeiten zu einer Monographie der Tetrarhynchoideen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-Naturwissenschaftliche Klasse 122, 171–253.

Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., Schander, C., Sundberg, P., and Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369–371.
Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCku74%3D&md5=18cfefc3b26f03bf9140c1535db0ea33CAS |

Robertson, D. R., and Cramer, K. L. (2009). Shore fishes and biogeographic subdivisions of the tropical eastern Pacific. Marine Ecology Progress Series 380, 1–17.
Shore fishes and biogeographic subdivisions of the tropical eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Roe, A. D., and Sperling, F. A. H. (2007). Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Molecular Ecology 16, 3617–3633.
Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2mu7%2FN&md5=94f5e24af19a7fdc4f25c16721efb216CAS |

Rohde, K. (2005). ‘Marine Parasitology.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Ruhnke, T. R. (2011). Tapeworms of Elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes: Cestoda). Bulletin of the University of Nebraska State Museum 25, 1–205.

Schaeffner, B. (2013). Cestodes of the order Trypanorhyncha Diesing, 1863 from South-east Asia and Australia. Ph.D. Thesis. The University of Melbourne: Parkville, Vic., Australia.

Schaeffner, B. C. (2016). Review of the genus Shirleyrhynchus Beveridge & Campbell, 1988 (Trypanorhyncha: Shirleyrhynchidae), with the resurrection of S. butlerae Beveridge & Campbell, 1988 and the description of S. panamensis n. sp. Systematic Parasitology 93, 413–430.
Review of the genus Shirleyrhynchus Beveridge & Campbell, 1988 (Trypanorhyncha: Shirleyrhynchidae), with the resurrection of S. butlerae Beveridge & Campbell, 1988 and the description of S. panamensis n. sp.Crossref | GoogleScholarGoogle Scholar |

Schaeffner, B. C., and Beveridge, I. (2012). Prochristianella Dollfus, 1942 (Trypanorhyncha: Eutetrarhynchidae) from elasmobranchs off Borneo and Australia, including new records and the description of four new species. Zootaxa 3505, 1–25.

Schaeffner, B. C., and Beveridge, I. (2013). Re-descriptions and new records of species of Otobothrium Linton, 1890 (Cestoda: Trypanorhyncha). Systematic Parasitology 84, 17–55.
Re-descriptions and new records of species of Otobothrium Linton, 1890 (Cestoda: Trypanorhyncha).Crossref | GoogleScholarGoogle Scholar |

Schaeffner, B. C., and Beveridge, I. (2014). The trypanorhynch cestode fauna of Borneo. Zootaxa 3900, 21–49.
The trypanorhynch cestode fauna of Borneo.Crossref | GoogleScholarGoogle Scholar |

Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., and Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421–438.
Integrative taxonomy: a multisource approach to exploring biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVShtQ%3D%3D&md5=c681d40a935d2aa5c3dda32221f49568CAS |

Scholz, T., de Chambrier, A., Kuchta, R., Littlewood, D. T. J., and Waeschenbach, A. (2013). Macrobothriotaenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution. Zootaxa 3640, 485–499.
Macrobothriotaenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): example of convergent evolution.Crossref | GoogleScholarGoogle Scholar |

Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., and Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583.
Marine ecoregions of the world: a bioregionalization of coastal and shelf areas.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2001). ‘PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0.a150.’ (Sinauer: Sunderland, MA.)

Tkach, V., Grabda-Kazubska, B., Pawlowski, J., and Swiderski, Z. (1999). Molecular and morphological evidences for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus, and Paralepoderma (Digenea, Plagiorchioidea). Acta Parasitologica 44, 170–179.
| 1:CAS:528:DC%2BD3cXhtFakur8%3D&md5=686bbff495dd7a92ded726b40ded320cCAS |

Turner, R. L. (2006). ‘Sequence variation in the mitochondrial cytochrome c oxidase I and the ribosomal 2nd internal transcribed spacer region from geographic diverse samples of Paraorygmatobothrium (Tetraphyllidea: Phyllobothriidae), collected from the Blacktip shark, Carcharhinus limbatus.’ (West Virginia State University: Institute, WV.)

Valdecasas, A. G., Williams, D., and Wheeler, Q. D. (2008). ‘Integrative taxonomy’ then and now: a response to Dayrat (2005). Biological Journal of the Linnean Society. Linnean Society of London 93, 211–216.
‘Integrative taxonomy’ then and now: a response to Dayrat (2005).Crossref | GoogleScholarGoogle Scholar |

Varón, A., Vinh, L. S., and Wheeler, W. C. (2010). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26, 72–85.
POY version 4: phylogenetic analysis using dynamic homologies.Crossref | GoogleScholarGoogle Scholar |

Vawter, A. T., Rosenblatt, R., and Gorman, G. C. (1980). Genetic divergence among fishes of the eastern Pacific and the Caribbean: support for the molecular clock. Evolution 34, 705–711.
Genetic divergence among fishes of the eastern Pacific and the Caribbean: support for the molecular clock.Crossref | GoogleScholarGoogle Scholar |

Voight, J. R. (1988). Trans-Panamanian geminate octopods (Mollusca: Octopoda). Malacologia 29, 289–294.

Wheeler, W. C. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C. (2001a). Homology and the optimization of DNA sequence data. Cladistics 17, S3–S11.
Homology and the optimization of DNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vnvFKrtg%3D%3D&md5=4da238701e600f3e919c3e72643e6736CAS |

Wheeler, W. C. (2001b). Homology and DNA sequence data. In ‘The Character Concept in Evolutionary Biology’. (Ed. G. P. Wagner.) pp. 303–318. (Academic Press: New York, NY.) 10.1016/b978-012730055-9/50024-0

Wheeler, W. C. (2003a). Iterative pass optimization. Cladistics 19, 254–260.
Iterative pass optimization.Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C. (2003b). Implied alignment: a synapomorphy based multiple-sequence alignment method and its use in cladogram search. Cladistics 19, 261–268.
Implied alignment: a synapomorphy based multiple-sequence alignment method and its use in cladogram search.Crossref | GoogleScholarGoogle Scholar |

Wheeler, Q. D. (2008). Introductory: toward the new taxonomy. In ‘The New Taxonomy’. (Ed. Q. D. Wheeler.) pp. 1–17. (CRC Press: Washington, DC.)

Wheeler, W. C., Aagesen, L., Arango, C. P., Faivovich, J., Grant, T., D’Haese, C., Janies, D., Smith, W. L., Varón, A., and Giribet, G. (2006). ‘Dynamic Homology and Phylogenetic Systematics: a Unified Approach Using POY.’ (American Museum of Natural History: New York, NY.)

White, B. N. (1986). The isthmian link, antitropicality and American biogeography: distributional history of the Atherinopsinae (Pisces: Atherinidae). Systematic Zoology 35, 176–194.
The isthmian link, antitropicality and American biogeography: distributional history of the Atherinopsinae (Pisces: Atherinidae).Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Williams, S. T., and Ozawa, T. (2006). Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda). Molecular Phylogenetics and Evolution 39, 33–51.
Molecular phylogeny suggests polyphyly of both the turban shells (family Turbinidae) and the superfamily Trochoidea (Mollusca: Vetigastropoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisF2htrg%3D&md5=8be042834f31924ea392792f2cbb7240CAS |

Young, R. T. (1954). Cestodes of sharks and rays in southern California. Proceedings of the Helminthological Society of Washington 21, 106–112.

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis, University of Texas, Austin, TX, USA.