Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Exploring the role of within-island ecogeographical factors: insights from the genetic diversity of Cretan trap-door spiders (Cyrtocarenum cunicularium, Ctenizidae : Araneae)

Evanthia Thanou A E , Panagiotis Kornilios A , Dimitris Poursanidis B , Aristeidis Parmakelis C , Miquel A. Arnedo D and Maria Chatzaki A
+ Author Affiliations
- Author Affiliations

A Department of Molecular Biology and Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece.

B Foundation for Research and Technology − Hellas (FORTH), Institute of Applied and Computational Mathematics, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Greece.

C Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece.

D Biodiversity Research Institute (IRBio), Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.

E Corresponding author. Email: thanouevanthia@gmail.com

Invertebrate Systematics 31(4) 506-517 https://doi.org/10.1071/IS16082
Submitted: 3 December 2016  Accepted: 15 April 2017   Published: 7 August 2017

Abstract

Crete (Aegean Sea, Greece), like other Mediterranean islands, has a complex palaeogeographical history, including several cycles of fragmentation into palaeoislands and subsequent reconnection. Here, we use the Cretan trap-door spider Cyrtocarenum cunicularium as a model organism to explore the importance of within-island evolutionary processes, such as palaeogeographic events and climatic changes. We assessed the phylogeny, population clustering and historical demography of 61 specimens with mitochondrial (COI) and nuclear (H3) markers. We investigated the isolation-by-distance and spatial diffusion processes that have shaped their past and current distribution and estimated the effect of niche divergence, using species distribution modelling. Two genetic lineages have continuously been distributed in the west and east part of Crete during the last 2 million years. Their genetic structure is concordant with Crete’s fragmentation into palaeoislands during the Pliocene and additionally affected by the sea-level oscillations and climatic changes due to the Pleistocenic glacial cycles. In central Crete, some evidence of genetic admixture between them was found, which needs to be further explored. According to species distribution modelling, the niche of each lineage corresponds to different environmental parameters, while isolation-by-distance was also detected. The divergence between the ‘West’ and ‘East’ lineages was promoted by palaeogeographical factors but seems to be maintained by the species’ poor dispersal abilities and the local ecological adaptation of each lineage. The case of the Cretan C. cunicularium highlights the additive effect of ecogeographical and behavioural factors in shaping insular biodiversity.

Additional keywords: Cretan palaeoislands, historical demography, island biogeography, Mediterranean, mygalomorph spiders, niche modeling, phylogeography, spatial diffusion.


References

Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., and Huchon, P. (1982). The tectonic development of the Hellenic Arc and the sea of the Crete: a synthesis. Tectonophysics 86, 159–196.
The tectonic development of the Hellenic Arc and the sea of the Crete: a synthesis.Crossref | GoogleScholarGoogle Scholar |

Araújo, M. B., and Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography 33, 1677–1688.
Five (or so) challenges for species distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Bandelt, H.-J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar |

Bauzà-Ribot, M. M., Jaume, D., Fornos, J. J., Juan, C., and Pons, J. (2011). Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago. BMC Evolutionary Biology 11, 221.
Islands beneath islands: phylogeography of a groundwater amphipod crustacean in the Balearic archipelago.Crossref | GoogleScholarGoogle Scholar |

Bielejec, F., Rambaut, A., Suchard, M. A., and Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27, 2910–2912.
SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics.Crossref | GoogleScholarGoogle Scholar |

Bisconti, R., Canestrelli, D., and Nascetti, G. (2013). Has living on islands been so simple? Insights from the insular endemic frog Discoglossus montalentii. PLoS One 8, e55735.
Has living on islands been so simple? Insights from the insular endemic frog Discoglossus montalentii.Crossref | GoogleScholarGoogle Scholar |

Bond, J. E., Hedin, M. C., Ramirez, M. G., and Opell, B. D. (2001). Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology 10, 899–910.
Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus.Crossref | GoogleScholarGoogle Scholar |

Bond, J. E., Beamer, D. A., Lamb, T., and Hedin, M. (2006). Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region.Crossref | GoogleScholarGoogle Scholar |

Bosmans, R., and Chatzaki, M. (2005). A catalogue of the spiders of Greece. Newsletter of the Belgian Arachnological Society 20, 1–124.

Bosmans, R., Van Keer, J., Russell-Smith, A., Kronestedt, T., Alderweireldt, M., Bosselaers, J., and De Koninck, H. (2013). Spiders of Crete (Araneae). A catalogue of all currently known species from the Greek island of Crete. Newsletter of the Belgian Arachnological Society 28, 1–147.

Chatzaki, M., Pitta, E., Poursanidis, D., Komnenov, M., Gloor, D., Nikolakakis, M., and Nentwig, W. (2015). SPIDOnet.gr – Spiders of Greece, Version 1.0. Available at www.araneae.unibe.ch/spidonet [accessed 19 February 2016].

Corander, J., Marttinen, P., Sirén, J., and Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9, 539–542.
Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations.Crossref | GoogleScholarGoogle Scholar |

Creutzburg, N. (1963). Paleogeographic evolution of Crete from Miocene till our days. Cretan Annals 15/16, 336–342.

Cuttlelod, A., García, N., Abdul Malak, D., Temple, H., and Katariya, V. (2008). The Mediterranean: a biodiversity hotspot under threat. In ‘The 2008 Review of the IUCN Red List of Threatened Species’. (Eds J.-C. Vié, C. Hilton-Taylor and S. N. Stuart.) pp. 2–13. (IUCN: Gland, Switzerland.)

Dermitzakis, M. D. (1990). Paleogeography, geodynamic processes and event stratigraphy during the late Cenozoic of the Aegean area. Accademia Nazionale dei Lincei. Fondazione Leone Caetani 85, 263–288.

Dermitzakis, M. D., and De Vos, J. (1987). Faunal succession and evolution of mammals in Crete during the Pleistocene. Neues Jahrbuch Geologischer und Paläontologischer Abhandlungen 173, 377–408.

Drooger, C. W., and Meulenkamp, J. E. (1973). Stratigraphic contributions to geodynamics in the Mediterranean area: Crete as a case history. Bulletin of the Geological Society of Greece 10, 193–200.

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar |

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–992.

Hamilton, C. A., Formanowicz, D. R., and Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS One 6, e26207.
Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas.Crossref | GoogleScholarGoogle Scholar |

Haq, B. U. (1991). Sequence stratigraphy, sea-level change and significance for the deep sea. Special Publication of the International Association of Sedimentologists 12, 79–89.

Heled, J., and Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology 8, 289.
Bayesian inference of population size history from multiple loci.Crossref | GoogleScholarGoogle Scholar |

Hendrixson, B. E., and Bond, J. E. (2005). Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “paraphyly” and cryptic diversity. Molecular Phylogenetics and Evolution 36, 405–416.
Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “paraphyly” and cryptic diversity.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Jiménez-Valverde, A., and Lobo, J. M. (2006). Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae). Environmental Entomology 35, 1491–1499.
Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae).Crossref | GoogleScholarGoogle Scholar |

Kornilios, P., Thanou, E., Kapli, P., Parmakelis, A., and Chatzaki, M. (2016). Peeking through the trapdoor: historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae. Molecular Phylogenetics and Evolution 98, 300–313.
Peeking through the trapdoor: historical biogeography of the Aegean endemic spider Cyrtocarenum Ausserer, 1871 with an estimation of mtDNA substitution rates for Mygalomorphae.Crossref | GoogleScholarGoogle Scholar |

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.
Clustal W and Clustal X version 2.0.Crossref | GoogleScholarGoogle Scholar |

Legakis, A., and Kypriotakis, Z. (1994). A biogeographical analysis of the island of Crete, Greece. Journal of Biogeography 21, 441–445.
A biogeographical analysis of the island of Crete, Greece.Crossref | GoogleScholarGoogle Scholar |

Lemey, P., Rambaut, A., Welch, J. J., and Suchard, M. A. (2010). Phylogeography takes a relaxed random walk in continuous space and time. Molecular Biology and Evolution 27, 1877–1885.
Phylogeography takes a relaxed random walk in continuous space and time.Crossref | GoogleScholarGoogle Scholar |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar |

Lymberakis, P., and Poulakakis, N. (2010). Three continents claiming an archipelago: the evolution of Aegean’s herpetofaunal diversity. Diversity (Basel) 2, 233–255.
Three continents claiming an archipelago: the evolution of Aegean’s herpetofaunal diversity.Crossref | GoogleScholarGoogle Scholar |

Meulenkamp, J. E. (1971). The Neogene in the southern Aegean area. In ‘Evolution in the Aegean’. (Ed. A. Strid.) pp. 5–12. (C.W.K. Gleerup: Lund, Sweden.)

Meulenkamp, J. E. (1985). Aspects of the Late Cenozoic evolution of the Aegean region. In ‘Geological Evolution of the Mediterranean Basin’. (Eds D. J. Stanley and F. C. Wezel.) pp. 307–321. (Springer: New York.)

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA. (Ed. Institute of Electrical and Electronics Engineers, IEEE.) pp. 1–8. (Curran Associates: New York.)

Opatova, V., and Arnedo, M. A. (2014). Spiders on a hot volcanic roof: colonization pathways and phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae). PLoS One 9, e115078.
Spiders on a hot volcanic roof: colonization pathways and phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae).Crossref | GoogleScholarGoogle Scholar |

Opatova, V., Bond, J. E., and Arnedo, M. A. (2013). Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution 69, 1135–1145.
Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar |

Parmakelis, A., Pfenninger, I., Spanos, L., Papagiannakis, G., Louis, C., and Mylonas, M. (2005). Inference of a radiation in Mastus (Gastropoda, Pulmonata, Enidae) on the island of Crete. Evolution 59, 991–1005.
Inference of a radiation in Mastus (Gastropoda, Pulmonata, Enidae) on the island of Crete.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., Dudík, M., and Schapire, R. E. (2004). A maximum entropy approach to species distribution modelling. In ‘Proceedings of the 21st International Conference on Machine Learning, Alberta, Canada’. (Eds R. Greiner and D. Schuurmans.) pp. 655–662. (ACM Press: New York.)

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modelling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). JModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
JModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar |

Poulakakis, N., Lymberakis, P., Antoniou, A., Chalkia, D., Zouros, E., Mylonas, M., and Valakos, E. (2003). Molecular phylogeny and biogeography of the wall-lizard Podarcis erhardii (Squamata: Lacertidae). Molecular Phylogenetics and Evolution 28, 38–46.
Molecular phylogeny and biogeography of the wall-lizard Podarcis erhardii (Squamata: Lacertidae).Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer ver. 1.6. Available at http://beast.bio.ed.ac.uk/Tracer [accessed 9 October 2015].

Ramos-Onsins, S. E., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 2092–2100.
Statistical properties of new neutrality tests against population growth.Crossref | GoogleScholarGoogle Scholar |

Rogers, A. R., and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 52–69.

Rogers, A. R., Fraley, A. E., Bamshad, M. J., Watkins, W. S., and Jorde, L. B. (1996). Mitochondrial mismatch analysis is insensitive to the mutational process. Molecular Biology and Evolution 13, 895–902.
Mitochondrial mismatch analysis is insensitive to the mutational process.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Salvi, D., Schembri, P. J., Sciberras, A., and Harris, D. J. (2014). Evolutionary history of the Maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography. Molecular Ecology 23, 1167–1187.
Evolutionary history of the Maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography.Crossref | GoogleScholarGoogle Scholar |

Sauer, J., and Hausdorf, B. (2010). Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evolutionary Biology 10, 299–311.
Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers.Crossref | GoogleScholarGoogle Scholar |

Schilthuizen, M., Gutteling, E., Van Moorsel, C. H. M., Welter-Schultes, F. W., Haase, M., and Gittenberger, E. (2004). Phylogeography of the land snail Albinaria hippolyti (Pulmonata: Clausiliidae) from Crete, inferred from ITS-1 sequences. Biological Journal of the Linnean Society. Linnean Society of London 83, 317–326.
Phylogeography of the land snail Albinaria hippolyti (Pulmonata: Clausiliidae) from Crete, inferred from ITS-1 sequences.Crossref | GoogleScholarGoogle Scholar |

Soberón, J., and Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America 106, 19644–19650.
Niches and distributional areas: concepts, methods, and assumptions.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |

Thompson, J. D. (2005). ‘Plant Evolution in the Mediterranean.’ (Oxford University Press: Oxford.)

Velonà, A., Ghesini, S., Luchetti, A., Marini, M., and Mantovani, B. (2010). Starting from Crete, a phylogenetic re-analysis of the genus Reticulitermes in the Mediterranean area. Molecular Phylogenetics and Evolution 56, 1051–1058.
Starting from Crete, a phylogenetic re-analysis of the genus Reticulitermes in the Mediterranean area.Crossref | GoogleScholarGoogle Scholar |

Vogiatzakis, I. N., Pungetti, G., and Mannion, A. M. (2008). ‘Mediterranean Island Landscapes: Natural and Cultural Approaches.’ (Springer Publishing: New York.)

Zohary, M., and Orshan, G. (1965). An outline of the geobotany of Crete. Israel Journal of Botany 14, 1–49.