Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

eadem figura manet: Measuring morphological convergence in diplocentrid scorpions (Arachnida : Scorpiones : Diplocentridae) under a multilocus phylogenetic framework

Carlos E. Santibáñez-López A C D , Ricardo Kriebel B C and Prashant P. Sharma A
+ Author Affiliations
- Author Affiliations

A Department of Zoology, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA.

B Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA.

C Authors contributed equally to this work.

D Corresponding author. Email: santibanezlo@wisc.edu

Invertebrate Systematics 31(3) 233-248 https://doi.org/10.1071/IS16078
Submitted: 19 November 2016  Accepted: 15 January 2017   Published: 2 May 2017

Abstract

Morphology still plays a key role in the systematics and phylogenetics of most of the scorpion families and genera, including the Diplocentridae Karsch, 1880. The monophyly of this family, and the monophyly of its two subfamilies is supported by morphological characters; however, neither hypothesis has been tested using molecular data. The lack of a molecular phylogeny has prevented the study of the evolution of morphology within the family. Here, we examine the morphological evolution of several key character systems in diplocentrid systematics. We tested the monophyly of the Diplocentridae, and subsequently the validity of its two subfamilies using a five-locus phylogeny. We examined the variation and evolution of the shape of the carapace, the external surface of the pedipalp patella and the retrolateral surface of the pedipalp chelae of males and females. We also examined the phylogenetic signal of discrete and continuous characters previously reported. We show that Diplocentridae is monophyletic, but Nebinae is nested within Diplocentrinae. Therefore, Nebinae is synonymised with Diplocentrinae (new synonymy). Finally, we show that a new character system proposed here, tarsal spiniform and macrosetal counts, retains high phylogenetic signal and circumscribes independently evolving substructures within this character system.

Additional keywords: comparative methods, dated phylogeny, phylogenetic signal, trait correlation.


References

Abouheif, E. (1999). A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research 1, 895–909.

Agolin, M., and D’Haese, C. A. (2009). An application of dynamic homology to morphological characters: direct optimization of setae sequences and phylogeny of the family Odontellidae (Poduromorpha, Collembola). Cladistics 25, 353–385.
An application of dynamic homology to morphological characters: direct optimization of setae sequences and phylogeny of the family Odontellidae (Poduromorpha, Collembola).Crossref | GoogleScholarGoogle Scholar |

Blomberg, S. P., Garland, T., and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.
Testing for phylogenetic signal in comparative data: behavioral traits are more labile.Crossref | GoogleScholarGoogle Scholar |

Bonhomme, V., Picq, S., Gaucherel, C., and Claude, J. (2014). Momocs: outline analysis using R. Journal of Statistical Software 56, 1–24.
Momocs: outline analysis using R.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=12c15c65b143ca193ea00e1aa007f6b7CAS |

Chessel, D., Dufour, A. B., and Thioulouse, J. (2004). The ade4 package-I- one-table methods. R News 4, 5–10.

Coddington, J. A., Giribet, G., Harvey, M. S., Prendini, L., and Walter, D. E. (2004). Arachnida. In ‘Assembling the Tree of Life’. (Eds J. Cracraft and P. C. J. Donoghue.) pp. 296–318. (Oxford University Press: New York.)

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=1e151a811e335310e17f8244e6b6ccbaCAS |

Drummond, A. J., Ho, S., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=1128fe2c54a768f2b18bd3a1ecbe3c88CAS |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=3779829e13a4c162ef008e41e63c789fCAS |

Fet, V., Gantenbein, B., Gromov, A., Lowe, G., and Lourenço, W. R. (2003). The first molecular phylogeny of Buthidae (Scorpiones). Euscorpius 4, 1–10.

Francke, O. F. (1977a). Taxonomic observations on Heteronebo Pocock (Scorpionida, Diplocentridae). The Journal of Arachnology 4, 95–113.

Francke, O. F. (1977b). Scorpions of the genus Diplocentrus from Oaxaca, Mexico (Scorpionida, Diplocentridae). The Journal of Arachnology 4, 145–200.

Francke, O. F. (1978). Systematic revision of diplocentrid scorpions (Diplocentridae) from circum-Caribbean lands. Special Publications The Museum Texas Tech University 14, 1–92.

Francke, O. F. (1980). Revision of the genus Nebo Simon (Scorpiones: Diplocentridae). The Journal of Arachnology 8, 35–52.

Francke, O. F., and Prendini, L. (2008). Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): a reappraisal. Systematics and Biodiversity 6, 205–223.
Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): a reappraisal.Crossref | GoogleScholarGoogle Scholar |

Francke, O. F., Teruel, R., and Santibáñez-López, C. E. (2014). A new genus and a new species of scorpion (Scorpiones: Buthidae) from southeastern Mexico. The Journal of Arachnology 42, 220–232.
A new genus and a new species of scorpion (Scorpiones: Buthidae) from southeastern Mexico.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

González-Santillán, E., and Prendini, L. (2015). Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA. Cladistics 31, 341–405.
Phylogeny of the North American vaejovid scorpion subfamily Syntropinae Kraepelin, 1905, based on morphology, mitochondrial and nuclear DNA.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Hendrixson, B. E. (2006). Buthid scorpions of Saudi Arabia, with notes on other families (Scorpiones: Buthidae, Liochelidae, Scorpionidae). Fauna of Saudi Arabia 21, 33–120.

Keck, F., Rimet, F., Bouchez, A., and Franc, A. (2016). phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution 6, 2774–2780.
phylosignal: an R package to measure, test, and explore the phylogenetic signal.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P., and Maddison, D. R. (2016). Mesquite: a modular system for evolutionary analysis. Version 3.10. Available at http://mesquiteproject.org.

Mattoni, C., Ochoa, J., Ojanguren-Affilastro, A., and Prendini, L. (2010). Towards an all-species phylogeny of the scorpion family Bothriuridae. Cladistics 26, 216–217.

Monod, L., and Prendini, L. (2015). Evidence for Eurogondwana: the roles of dispersal, extinction and vicariance in the evolution and biogeography of Indo‐Pacific Hormuridae (Scorpiones: Scorpionoidea). Cladistics 31, 71–111.
Evidence for Eurogondwana: the roles of dispersal, extinction and vicariance in the evolution and biogeography of Indo‐Pacific Hormuridae (Scorpiones: Scorpionoidea).Crossref | GoogleScholarGoogle Scholar |

Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., and Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3, 743–756.
How to measure and test phylogenetic signal.Crossref | GoogleScholarGoogle Scholar |

Ojanguren-Affilastro, A. A., Mattoni, C. I., Ochoa, J. A., Ramírez, M. J., Ceccarelli, F. S., and Prendini, L. (2016). Phylogeny, species delimitation and convergence in the South American bothriurid scorpion genus Brachistosternus Pocock 1893: integrating morphology, nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 94, 159–170.
Phylogeny, species delimitation and convergence in the South American bothriurid scorpion genus Brachistosternus Pocock 1893: integrating morphology, nuclear and mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877–884.
Inferring the historical patterns of biological evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFymtL8%3D&md5=b5b652287d2718033ba064b4119c53d5CAS |

Pagel, M., and Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov Chain Monte Carlo. American Naturalist 167, 808–825.

Pavoine, S., Ollier, S., Pontier, D., and Chessel, D. (2008). Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theoretical Population Biology 73, 79–91.
Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar |

Prendini, L. (2000). Phylogeny and classification of the superfamily Scorpionoidea Latreille 1802 (Chelicerata, Scorpiones): an exemplar approach. Cladistics 16, 1–78.
Phylogeny and classification of the superfamily Scorpionoidea Latreille 1802 (Chelicerata, Scorpiones): an exemplar approach.Crossref | GoogleScholarGoogle Scholar |

Prendini, L. (2003). A new genus and species of bothriurid scorpion from the Brandberg Massif, Namibia, with a reanalysis of bothriurid phylogeny and a discussion of the phylogenetic position of Lisposoma Lawrence. Systematic Entomology 28, 149–172.
A new genus and species of bothriurid scorpion from the Brandberg Massif, Namibia, with a reanalysis of bothriurid phylogeny and a discussion of the phylogenetic position of Lisposoma Lawrence.Crossref | GoogleScholarGoogle Scholar |

Prendini, L., and Esposito, L. A. (2010). A reanalysis of Parabuthus (Scorpiones: Buthidae) phylogeny with descriptions of two new Parabuthus species endemic to the Central Namib gravel plains, Namibia. Zoological Journal of the Linnean Society 159, 673–710.

Prendini, L., and Wheeler, W. C. (2004). Assembling the scorpion tree of life: phylogeny of extant scorpions based on molecules, morphology and exemplars. Cladistics 20, 602–603.

Prendini, L., Crowe, T. M., and Wheeler, W. C. (2003). Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods. Invertebrate Systematics 17, 185–259.
Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslals7o%3D&md5=71fa9d340447aede75696c7348673cddCAS |

Prendini, L., Francke, O. F., and Vignoli, V. (2010). Troglomorphism, trichobothriotaxy and typhlochactid phylogeny (Scorpiones, Chactoidea): more evidence that troglobitism is not an evolutionary dead‐end. Cladistics 26, 117–142.
Troglomorphism, trichobothriotaxy and typhlochactid phylogeny (Scorpiones, Chactoidea): more evidence that troglobitism is not an evolutionary dead‐end.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer.

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Robinson, D. F., and Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147.
Comparison of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Santibáñez-López, C. E. (2014). A new species of the genus Diplocentrus Peters, 1861 (Scorpiones, Diplocentridae) from Oaxaca, Mexico. ZooKeys 412, 103–116.
A new species of the genus Diplocentrus Peters, 1861 (Scorpiones, Diplocentridae) from Oaxaca, Mexico.Crossref | GoogleScholarGoogle Scholar |

Santibáñez-López, C. E., and Francke, O. F. (2013). Redescription of Diplocentrus zacatecanus (Scorpiones: Diplocentridae) and limitations of the hemispermatophore as a diagnostic trait for genus Diplocentrus. The Journal of Arachnology 41, 1–10.
Redescription of Diplocentrus zacatecanus (Scorpiones: Diplocentridae) and limitations of the hemispermatophore as a diagnostic trait for genus Diplocentrus.Crossref | GoogleScholarGoogle Scholar |

Santibáñez-López, C. E., Francke, O. F., and Prendini, L. (2013a). Systematics of the keyserlingii group of Diplocentrus Peters, 1861 (Scorpiones: Diplocentridae), with descriptions of three new species from Oaxaca, Mexico. American Museum Novitates 3777, 1–48.
Systematics of the keyserlingii group of Diplocentrus Peters, 1861 (Scorpiones: Diplocentridae), with descriptions of three new species from Oaxaca, Mexico.Crossref | GoogleScholarGoogle Scholar |

Santibáñez-López, C. E., Francke, O. F. B., and Ortega-Gutierrez, A. (2013b). Variation in the spiniform macrosetae pattern on the basitarsi of Diplocentrus tehuacanus (Scorpiones: Diplocentridae): new characters to diagnose species within the genus. The Journal of Arachnology 41, 319–326.
Variation in the spiniform macrosetae pattern on the basitarsi of Diplocentrus tehuacanus (Scorpiones: Diplocentridae): new characters to diagnose species within the genus.Crossref | GoogleScholarGoogle Scholar |

Santibáñez-López, C. E., Francke, O. F., and Prendini, L. (2014a). Phylogeny of the North American scorpion genus Diplocentrus Peters, 1861 (Scorpiones: Diplocentridae) based on morphology, nuclear and mitochondrial DNA. Arthropod Systematics & Phylogeny 72, 257–279.

Santibáñez-López, C. E., Francke, O. F., and Prendini, L. (2014b). Kolotl, n. gen. (Scorpiones: Diplocentridae), a new scorpion genus from Mexico. American Museum Novitates 3815, 1–14.
Kolotl, n. gen. (Scorpiones: Diplocentridae), a new scorpion genus from Mexico.Crossref | GoogleScholarGoogle Scholar |

Schliep, K. P. (2011). phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593.
phangorn: phylogenetic analysis in R.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVWhur0%3D&md5=7aaf8895eb295cfda4538ba52b3d0ca3CAS |

Sharma, P. P., Fernández, R., Esposito, L. A., González-Santillán, E., and Monod, L. (2015). Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proceedings of the Royal Society B 282, 20142953.
Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal.Crossref | GoogleScholarGoogle Scholar |

Sissom, W. D. (1994). Descriptions of new and poorly known scorpions of Yemen (Scorpiones: Buthidae, Diplocentridae, Scorpionidae). Fauna of Saudi Arabia 14, 3–39.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=dbe02a1b9e110b233409dd1d5b71d108CAS |

Volschenk, E. S., and Prendini, L. (2008). Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions. Invertebrate Systematics 22, 235–257.
Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions.Crossref | GoogleScholarGoogle Scholar |

Vrancken, B., Lemey, P., Rambaut, A., Bedford, T., Longdon, B., Günthard, H. F., and Suchard, M. A. (2015). Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution. Methods in Ecology and Evolution 6, 67–82.
Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution.Crossref | GoogleScholarGoogle Scholar |