A new phoronid species, Phoronis embryolabi, with a novel type of development, and consideration of phoronid taxonomy and DNA barcoding
Elena N. Temereva A D and Anton Chichvarkhin B CA 119991, Russia, Moscow, Vorobievy Gory 1-12, Moscow State University, Biological Faculty, Dept. Invertebrate Zoology.
B 690041, Russia, Vladivostok, Palchevskogo st., 17, National Science Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences.
C 690950, Russia, Vladivostok, Suhanova st., 8, Far Eastern Federal University.
D Corresponding author. Email: temereva@mail.ru
Invertebrate Systematics 31(1) 65-84 https://doi.org/10.1071/IS16032
Submitted: 3 April 2016 Accepted: 15 August 2016 Published: 16 March 2017
Abstract
The Phoronida, which is one of the smallest phyla of invertebrates, includes only 13 valid species, although ~40 larval forms of phoronids were recently described. This report uses light microscopy and molecular methods to describe a new phoronid species, Phoronis embryolabi Temereva & Chichvarkhin, sp. nov. The morphology of P. embryolabi, which lives commensally in the burrows of Axiidea shrimp Nihonotrypaea japonica in Vostok Bay (the Sea of Japan), is extremely similar to that of Phoronis pallida Silen, 1952; the bodies of both species exhibit specific regionalisation. However, the organisation of the metanephridia differs between P. pallida and P. embryolabi. Moreover, P. embryolabi has a unique type of development, viviparity, in which mothers release fully developed larvae into the environment. In all other phoronid species, the spawning occurs as a release of fertilised eggs or early embryos. Viviparity of completely developed larvae has not been previously described for any phoronid. According to analysis of partial 28S rRNA, P. embryolabi is close to Phoronis pallida. On the other hand, analysis of partial cytochrome c oxidase subunit I indicated a unique position of P. embryolabi among phoronids. These results should be used for revision of phoronid taxonomy (i.e. the type of development should be considered as characteristic of subgenera within the genus Phoronis). This report also establishes the relationship between P. embryolabi and an Actinotrocha sp. that was described in a previous paper.
Additional keywords: 28S rRNA, actinotroch, COI, cytochrome c oxidase subunit 1, morphology, Phoronida.
References
Allcock, A. L., Barratt, I., Eléaume, M., Linse, K., Norman, M. D., Smith, P. J., Steinke, D., Stevens, D. W., and Strugnell, J. M. (2011). Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Research. Part II, Topical Studies in Oceanography 58, 242–249.| Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life.Crossref | GoogleScholarGoogle Scholar |
Bailey-Brock, J. H., and Emig, C. (2000). Hawaiian Phoronida (Lophophorata) and their distribution in the Pacific region. Pacific Science 54, 119–126.
Barco, A., Houart, R., Bonomolo, G., Crocetta, F., and Oliverio, M. (2013). Molecular data reveal cryptic lineages within the northeastern Atlantic and Mediterranean small mussel drills of the Ocinebrina edwardsii complex (Mollusca: Gastropoda: Muricidae). Zoological Journal of the Linnean Society 169, 389–407.
| Molecular data reveal cryptic lineages within the northeastern Atlantic and Mediterranean small mussel drills of the Ocinebrina edwardsii complex (Mollusca: Gastropoda: Muricidae).Crossref | GoogleScholarGoogle Scholar |
Barr, N. B., Cook, A., Elder, P., Molongoski, J., Prasher, D., and Robinson, D. G. (2009). Application of a DNA barcode using the 16S rRNA gene to diagnose pest Arion species in the USA. The Journal of Molluscan Studies 75, 187–191.
| Application of a DNA barcode using the 16S rRNA gene to diagnose pest Arion species in the USA.Crossref | GoogleScholarGoogle Scholar |
Becker, S., Hanner, R., and Steinke, D. (2011). Five years of FISH-BOL: brief status report. Mitochondrial DNA 22, 3–9.
| Five years of FISH-BOL: brief status report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isrbI&md5=7128a86fb482af44e4c53c0e9e06ab23CAS |
Bergmann, T., Hadrys, H., Breves, G., and Schierwater, B. (2009). Character-based DNA barcoding: a superior tool for species classification. Berliner und Munchener Tierarztliche Wochenschrift 122, 446–450.
| 1:CAS:528:DC%2BD1MXhsFWit7vL&md5=05d4db803a58882a7c1447800027d250CAS |
Brower, A. V. Z. (2006). Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity 4, 127–132.
| Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae).Crossref | GoogleScholarGoogle Scholar |
Cámara, S., Carmona, L., Cella, K., Ekimova, I., Martynov, A., and Cervera, J. L. (2014). Tergipes tergipes (Förskal,1775) (Gastropoda: Nudibranchia) is an amphiatlantic species. The Journal of Molluscan Studies 80, 642–646.
| Tergipes tergipes (Förskal,1775) (Gastropoda: Nudibranchia) is an amphiatlantic species.Crossref | GoogleScholarGoogle Scholar |
Chen, J., Li, Q., Kong, L. F., and Yu, H. (2011). How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna. PLoS One 6, e21326.
| How DNA barcodes complement taxonomy and explore species diversity: the case study of a poorly understood marine fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVWitrg%3D&md5=235a5e0ae15718a31ed615da2c9798f9CAS |
Clare, E. L., Lim, B. K., Engstrom, M. D., Eger, J. L., and Hebert, P. D. N. (2007). DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes 7, 184–190.
| DNA barcoding of Neotropical bats: species identification and discovery within Guyana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVKrurY%3D&md5=ab07a92d30ad7ac8ca9d326f9829939aCAS |
Collins, R. A., and Cruickshank, R. H. (2012). The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13, 969–975.
Collins, R. A., Armstrong, K. F., and Meier, R. (2012). Barcoding and border biosecurity: identifying cyprinid fishes in the aquarium trade. PLoS One 7, e28381.
| Barcoding and border biosecurity: identifying cyprinid fishes in the aquarium trade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVGht7c%3D&md5=5a6f0b41b6041402a2d6d1ed537a25a0CAS |
DeSalle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology 20, 1545–1547.
| Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff.Crossref | GoogleScholarGoogle Scholar |
DeSalle, R., Egan, M. G., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1905–1916.
| The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=0d36b33ddeae400a8be6d6277785d3c9CAS |
Ekimova, I., Korshunova, T., Schepetov, D., Neretina, T., Sanamyan, N., and Martynov, A. (2015). Integrative systematics of Northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda) with descriptions of three new species. Zoological Journal of the Linnean Society 173, 841–886.
| Integrative systematics of Northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda) with descriptions of three new species.Crossref | GoogleScholarGoogle Scholar |
Emig, C. C. (1974). The systematics and evolution of the phylum Phoronida. Zeifschrift fur Zoologische Systematik und Evolutionsforschung 12, 128–151.
Emig, C. (1977). Embriology of Phoronida. American Zoologist 17, 21–37.
| Embriology of Phoronida.Crossref | GoogleScholarGoogle Scholar |
Emig, C. (1979). British and other phoronides. Synopsis of the British Fauna 13, 1–57.
Emig, C. (1982). The biology of Phoronida. Advances in Marine Biology 19, 1–89.
| The biology of Phoronida.Crossref | GoogleScholarGoogle Scholar |
Emig, C. (2016). Phoronid@ 2016. 31.11.2016. Available at: http://paleopolis.rediris.es/Phoronida/
Emig, C., and Golikov, A. (1990). On phoronids of the Far Eastern seas of the USSR and their distribution in the Pacific Ocean. Зоологический журнал 69, 22–30.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
| Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |
Feng, Y. W., Li, Q., Kong, L. F., and Zheng, X. D. (2011). COI-based DNA barcoding of Arcoida species (Bivalvia: Pteriomorphia) along the coast of China. Molecular Ecology Resources 11, 435–441.
| COI-based DNA barcoding of Arcoida species (Bivalvia: Pteriomorphia) along the coast of China.Crossref | GoogleScholarGoogle Scholar |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=3ed3b40952948838a8ebb6c4cd36ee0cCAS |
Forneris, L. (1959). Phoronidea from Brazil. Boletin Instute de Océanography 10, 1–105.
Goldstein, P. Z., and DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: determination, discovery and description. BioEssays 33, 135–147.
| Integrating DNA barcode data and taxonomic practice: determination, discovery and description.Crossref | GoogleScholarGoogle Scholar |
Gouÿ de Bellocq, J., Ferte, H., Depaquit, J., Justine, J.-L., Tillier, A., and Durette-Desset, M.-C. (2001). Phylogeny of the Trichostrongylina (Nematoda) inferred from 28S rDNA sequences. Molecular Phylogenetics and Evolution 19, 430–442.
| Phylogeny of the Trichostrongylina (Nematoda) inferred from 28S rDNA sequences.Crossref | GoogleScholarGoogle Scholar |
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=a7029faf93326ae9b57891e1e59a49afCAS |
Hebert, P. D. N., and Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852–859.
| The promise of DNA barcoding for taxonomy.Crossref | GoogleScholarGoogle Scholar |
Hebert, P., Cywinska, A., Ball, S., and de Waard, J. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
| Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=904238732c30945c696346552627a647CAS |
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004a). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.
| Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=e3efbf8a6c1fb3d48b5a12e1ed51f02cCAS |
Hebert, P. D. N., Stoeckle, M. Y., Zemlack, T. S., and Francis, C. M. (2004b). Identification of birds through DNA barcodes. PLoS Biology 2, e312.
| Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |
Hirose, M., Fukiage, R., Katoh, T., and Kajihara, H. (2014). Description and molecular phylogeny of a new species of Phoronis (Phoronida) from Japan, with a redescription of topotypes of P. ijimai Oka, 1897. ZooKeys 398, 1–31.
| Description and molecular phylogeny of a new species of Phoronis (Phoronida) from Japan, with a redescription of topotypes of P. ijimai Oka, 1897.Crossref | GoogleScholarGoogle Scholar |
Ikeda, I. (1901). Observation on the development, structure and metamorphosis of Actinotrocha. Journal of the College of Science. Imperial University, Tokyo 13, 507–591.
Ikeda, I. (1903). On the development of the sexual organs and their products in Phoronis. Annotationes Zoologicae Japonenses 3, 141–153.
Johnson, K. B. (2001). Phoronida. In ‘An Identification Guide to the Larval Marine Invertebrates of the Pacific Northwest’. (Ed. A. L. Shanks.) pp. 251–257. (Oregon State University Press: Corvallis, OR.)
Johnson, K. B., and Zimmer, R. L. (2002). Phylum Phoronida. In ‘Atlas of marine invertebrate larvae’. (Eds C. Young, M. Rice, M. Sewell.) pp. 429–439. (Academic Press: San Diego, San Francisco, CA.)
Jörger, K. M., Norenburg, J. L., Wilson, N. G., and Schrödl, M. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 12, 245.
| Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs.Crossref | GoogleScholarGoogle Scholar |
Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In ‘Mammalian Protein Metabolism’. (Ed. H. N. Munro.) pp. 21–132. (Academic Press: New York, NY.)
Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
| A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=2e57ef9928a501922e443e3f41c42cb9CAS |
Krug, P. J., Vendetti, J. E., Rodriguez, A. K., Retana, J. N., Hirano, Y. M., and Trowbridge, C. D. (2013). Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control. Molecular Phylogenetics and Evolution 69, 1101–1119.
| Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control.Crossref | GoogleScholarGoogle Scholar |
Lowenstein, J. H., Burger, J., Jeitner, C. W., Amato, G., Kolokotronis, S. O., and Gochfeld, M. (2010). DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers. Biology Letters 6, 692–695.
| DNA barcodes reveal species-specific mercury levels in tuna sushi that pose a health risk to consumers.Crossref | GoogleScholarGoogle Scholar |
Mamkaev, Y. V. (1962). About Phoronids of Far Eastern seas. Researches of Far East Seas USSR 8, 219–237.
Meier, R. (2008). DNA sequences in taxonomy: opportunities and challenges. In ‘The New Taxonomy’. (Ed. Q. D. Wheeler.) pp. 95–127. (CRC Press: New York, NY.)
Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
| DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar |
Nei, M., and Kumar, S. (2000). ‘Molecular Evolution and Phylogenetics.’ (Oxford University Press: New York, NY.)
Ostrovsky, A. N. (2013). ‘Evolution of Sexual Reproduction in Marine Invertebrates. Example of Gymnolaemate Bryozoans.’ (Springer: Dordrecht, Heidelberg, New York, London.)
Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
| Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
| ABGD, automatic barcode gap discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zlsFeltQ%3D%3D&md5=a83611d3b5071e3236fbb7447997b353CAS |
Rattenbury, J. C. (1953). Reproduction in Phoronopsis viridis. The annual cycle in the gonads, maturation and fertilization of the ovum. The Biological Bulletin 104, 182–196.
| Reproduction in Phoronopsis viridis. The annual cycle in the gonads, maturation and fertilization of the ovum.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=eb4d9b9211c4f59088b8e30c23025081CAS |
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=4f6d93a03ea9ef962ca1a871d09059a6CAS |
Santagata, S. (2002). Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evolution & Development 4, 28–42.
| Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida).Crossref | GoogleScholarGoogle Scholar |
Santagata, S. (2004). A waterborne behavioral cue for the actinotroch larvae of Phoronis pallida (Phoronida) produced by Upogebia pugettensis (Decapoda: Thalassinidea). The Biological Bulletin 207, 103–115.
| A waterborne behavioral cue for the actinotroch larvae of Phoronis pallida (Phoronida) produced by Upogebia pugettensis (Decapoda: Thalassinidea).Crossref | GoogleScholarGoogle Scholar |
Santagata, S., and Cohen, B. (2009). Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zoological Journal of the Linnean Society 157, 34–50.
| Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1.Crossref | GoogleScholarGoogle Scholar |
Sarkar, I. N., Thornton, J. W., Planet, P. J., Figurski, D. H., Schierwater, B., and DeSalle, R. (2002). An automated phylogenetic key for classifying homeoboxes. Molecular Phylogenetics and Evolution 24, 388–399.
| An automated phylogenetic key for classifying homeoboxes.Crossref | GoogleScholarGoogle Scholar |
Sarkar, I. N., Planet, P. J., and DeSalle, R. (2008). CAOS software for use in character-based DNA barcoding. Molecular Ecology Resources 8, 1256–1259.
| CAOS software for use in character-based DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ks7nE&md5=1505b917f3f41db99cfffc44038cba4cCAS |
Schindel, D. E., and Miller, S. E. (2005). DNA barcoding a useful tool for taxonomists. Nature 435, 17.
| DNA barcoding a useful tool for taxonomists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVKntrc%3D&md5=e25a7c21e945345e311a2611457715c1CAS |
Selys-Longchamps, M. (1907). ‘Fauna und Flora des Golfes von Neapel und der Meeres-abschnitte: Phoronis.’ (von R. Friedländer & Sohn: Berlin.) Monogr. 30, 280 S.
Silén, L. (1952). Researches on Phoronidea of the Gullmar Fiord area (west coast of Sweden). Arkiv för Zoologi 4, 95–140.
Silén, L. (1954). Developmental biology of Phoronidea of the Gullmar Fiord area (west coast of Sweden). Acta Zoologica 35, 215–257.
| Developmental biology of Phoronidea of the Gullmar Fiord area (west coast of Sweden).Crossref | GoogleScholarGoogle Scholar |
Sin, Y. W., Yau, C., and Chu, K. H. (2009). Morphological and genetic differentiation of two loliginid squids, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae) in Asia. Journal of Experimental Marine Biology and Ecology 369, 22–30.
| Morphological and genetic differentiation of two loliginid squids, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae) in Asia.Crossref | GoogleScholarGoogle Scholar |
Sonnenberg, R., Nolte, A. W., and Tautz, D. (2007). An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Frontiers in Zoology 4, 6–12.
| An evaluation of LSU rDNA D1–D2 sequences for their use in species identification.Crossref | GoogleScholarGoogle Scholar |
Srivathsan, A., and Meier, R. (2012). On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194.
| On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=03ff7cc7d33ff928f46a243ed7d97fb2CAS |
Temereva, E. N. (2000). New Phoronid species Phoronopsis malakhovi (Lophophorata, Phoronida) from the South China Sea. Зоологический журнал 79, 1088–1093.
Temereva, E. N. (2005). Phylum Phoronids. In ‘Biota of the Russian Basin of the Sea of Japan. Vol. 3. Brachiopoda and Phoronida’. (Ed. A. V. Adrianov.) pp. 50–136. (Dalnauka: Vladivostok.)
Temereva, E. N. (2009). New data on distribution, morphology and taxonomy of phoronid larvae (Phoronida, Lophophorata). Invertebrate Zoology 6, 47–64.
Temereva, E. N., and Malakhov, V. V. (1999). A new rock dwelling phoronid species, Phoronis svetlanae (Lophophorata, Phoronida) from the Sea of Japan. Зоологический журнал 78, 626–630.
Temereva, E. N., and Malakhov, V. V. (2001). The morphology of the phoronid Phoronopsis harmeri. Russian Journal of Marine Biology 27, 21–30.
| The morphology of the phoronid Phoronopsis harmeri.Crossref | GoogleScholarGoogle Scholar |
Temereva, E. N., and Malakhov, V. V. (2004). Distinctive features of the microscopical anatomy and ultrastructure of the metanephridia Phoronopsis harmeri, Pixell, 1912 (Phoronida, Lophophorata). Invertebrate Zoology 1, 93–103.
Temereva, E. N., and Malakhov, V. V. (2006). Microscopic anatomy and ultrastructure of the lophophoral organs and adjacent epitheliums of the lophophoral concavity and anal papilla of Phoronopsis harmeri Pixell, 1912 (Lophophorata, Phoronida). Russian Journal of Marine Biology 32, 134–141.
Temereva, E. N., and and Malakhov, V. V. (2007). Embryogenesis and larval development of phoronid Phoronopsis harmeri Pixell, 1912: dual origin of the coelomic mesoderm. Invertebrate Reproduction and Development 50, 57–66.
Temereva, E., and Malakhov, V. (2012). Embryogenesis in phoronids. Invertebrate Zoology 8, 1–39.
Temereva, E., and Malakhov, V. (2016). Viviparity of larvae is the new type of development in phoronids (Lophophorata: Phoronida). Doklady Akademy of Science 467, 1–4.
Temereva, E. N., and Neretina, T. V. (2013). A distinct phoronid larva: morphological and molecular evidence. Invertebrate Systematics 27, 622–633.
| 1:CAS:528:DC%2BC3sXhvF2ku77O&md5=a49d77e90963525ee3b18baaf7d4371fCAS |
Temereva, E. N., Neretina, T. V., and Stupnikova, A. N. (2016a). An original description of the larval stages of Phoronis australis Haswell, 1883 and analysis of the world fauna of phoronid larvae. Russian Journal of Marine Biology 42, 128–138.
| An original description of the larval stages of Phoronis australis Haswell, 1883 and analysis of the world fauna of phoronid larvae.Crossref | GoogleScholarGoogle Scholar |
Temereva, E. N., Neretina, T. V., and Stupnikova, A. N. (2016b). The fauna of the South China Sea include unknown phoronid species: new records of larvae and adults. Systematics and Biodiversity 14, 509–523.
| The fauna of the South China Sea include unknown phoronid species: new records of larvae and adults.Crossref | GoogleScholarGoogle Scholar |
Turanov, S. V., and Kartavtsev, Y. P. (2014). The taxonomic composition and distribution of sand lances from the genus Ammodytes (Perciformes: Ammodytidae) in the North Pacific. Journal of Marine Biology 40, 447–454.
Undheim, E. A. B., Norman, J. A., Thoen, H. H., and Fry, B. G. (2010). Genetic identification of Southern Ocean octopod samples using mtCOI. Comptes Rendus Biologies 333, 395–404.
| Genetic identification of Southern Ocean octopod samples using mtCOI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWntb8%3D&md5=5958774ef03a84491f58e9d433d857c8CAS |
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1847–1857.
| DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=8b6bb2c8e678818cd67d99c52b43e191CAS |
Wiemers, M., and Fiedler, K. (2007). Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4, 8.
| Does the DNA barcoding gap exist? A case study in blue butterflies (Lepidoptera: Lycaenidae).Crossref | GoogleScholarGoogle Scholar |
Will, K. W., and Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47–55.
| Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification.Crossref | GoogleScholarGoogle Scholar |
Zimmer, R. L. (1964). Reproductive biology and development of Phoronida. Ph.D. Thesis, University of Washington, Seattle. [Available from Xerox University Microfilms, Ann Arbor, Michigan.]
Zhang, A. B., Muster, C., and Liang, H. B. (2012). A fuzzy-set-theory-based approach to analyze species membership in DNA barcoding. Molecular Ecology 21, 1848–1863.
| A fuzzy-set-theory-based approach to analyze species membership in DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksbo%3D&md5=a5ca568fcb5bddc4f729c006f40da6d2CAS |
Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
| A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWnsbzL&md5=35c688f3bd0ce12dfe0afb5164a00acdCAS |