Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae : Pimoidae)

Stefano Mammola A , Gustavo Hormiga B , Miquel A. Arnedo C and Marco Isaia A D
+ Author Affiliations
- Author Affiliations

A Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.

B Department of Biological Sciences, The George Washington University, Washington DC, USA.

C Biodiversity Research Institute and Department of Animal Biology, University of Barcelona, Barcelona, Spain.

D Corresponding author. Email: marco.isaia@unito.it

Invertebrate Systematics 30(6) 566-587 https://doi.org/10.1071/IS16017
Submitted: 23 February 2016  Accepted: 20 April 2016   Published: 13 December 2016

Abstract

Pimoidae is a small family of araneoid spiders, hitherto represented in Europe by two species with disjunct distribution in the Alps and in the Cantabrian Mountains of northern Spain. Here we report the description of two additional European species of Pimoa, discovered within the range of the only former alpine species, P. rupicola: P. graphitica sp. nov. and P. delphinica sp. nov. The new species are distinguished from the latter by genitalic characters as well as by molecular characters. On the basis of the re-examination of old and recent abundant material collected in caves and other subterranean habitats, we revise the distribution patterns of the genus Pimoa in the Alps and outline the species distribution ranges. Molecular data suggest the existence of gene flow between populations of the two new species when in sympatry. The different species probably originated in the alpine region as a result of range contractions following dramatic climatic changes in the Alps since the mid Miocene. We interpreted the present-day overlapping distribution in light of a possible postglacial expansion. Finally, we provide insights on the natural history and life cycles of the new species and discuss their phylogenetic relationships within Pimoidae.


References

AGSP (2016). Catasto speleologico del Piemonte e della Valle D’Aosta. Available at: http://sellarenato.interfree.it

Arnò, C., and Lana, E. (2005). ‘Ragni cavernicoli del Piemonte e della Valle d’Aosta.’ (Associazione Gruppi Speleologici Piemontesi, Ed. “La Grafica Nuova”: Torino, Italy)

Bertkau, P. (1890). Arachniden gesammelt vom 12 November 1888 bis zum 10 Mai 1889 in San Remo von Prof. Dr Oskar Schneider. 1–11.

Bidegaray-Batista, L., and Arnedo, M. (2011). Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, 317.
Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders.Crossref | GoogleScholarGoogle Scholar |

Brignoli, P.M. (1971). Note su ragni cavernicoli italiani (Araneae). Fragmenta entomologica 7, 129–229.

Brignoli, P. M. (1972). Catalogo dei ragni cavernicoli italiani. Quaderni di Speleologia del Circolo Speleologico Romano 20, 1–211.

Brignoli, P.M. (1975). Ragni d’Italia XXV. Su Alcuni ragni cavernicoli dell’Italia Settentrionale. Notizie circolo speleologico Roma 20, 1–35.

Brignoli, P. M. (1979). Ragni d’Italia XXXI. Specie cavernicole nuove e interessanti. Quaderni del Museo Speleologico. V Rivera 5, 3–48.

Brignoli, P.M. (1985). Aggiunte e correzioni al «Catalogo dei Ragni cavernicoli italiani». Memorie del Museo civico di Storia Naturale di Verona 4, 51–64.

Casale, A. (1971). Note biologiche. I ragni delle grotte piemontesi. Grotte. Bollettino del Gruppo Speleologico Piemontese GSP CAI-UGET 46, 14–16.

Chamberlin, R. V., and Ivie, W. (1943). New genera and species of North American linyphiid spiders. Bulletin of the University of Utah 33, 1–39.

Christiansen, K. (1962). Proposition pour la classification des animaux cavernicoles. Spelunca 2, 75–78.

Culver, D. C., and Pipan, T. (2009). Superficial subterranean habitats – gateway to the subterranean realm? Cave and Karst Science 35, 5–12.

Culver, D. C., and Pipan, T. (2014). ‘Shallow Subterranean Habitats. Ecology, Evolution, and Conservation.’ (University Press: Oxford.)

Denis, J. (1949a). Notes sur les érigonides. XVI. Essai sur la détermination des femelles d’érigonides. Bulletin de la Société d’Histoire Naturelle de Toulouse 83, 129–158.

Denis, J. (1949b). Sur quelques Araignées de Provence. Bulletin de la Société Zoologique de France 74, 16–18.

Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2011). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society B 279, 1341–1350.

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=5ab730c939a1ffbe2d25920cbdfa4ea5CAS |

Ezard, T., Fujisawa, T., and Barraclough, T. (2014). splits: species’ limits by threshold statistics. R package version 1.0–19/r51. Available at: http://R-Forge.R-project.org/projects/splits/

Fairmaire, L. (1882). Trois nouvelle espèces de Coléoptères appartenent au Musée Civique de Gênes. Annali del Museo Civico di Storia Naturale Giacomo Doria 18, 445–447.

Foelix, R. F. (1996). ‘Biology of Spiders.’ 2nd edn. (Oxford University Press: Oxford.)

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=3ed3b40952948838a8ebb6c4cd36ee0cCAS |

Gertsch, W. J., and Ivie, W. (1936). Descriptions of new American spiders. American Museum Novitates 858, 1–25.

Gestro, R. (1885). Note entomologiche I. Contribuzione allo studio della fauna entomologica delle caverne in Italia. Annali del Museo Civico di Storia Naturale Giacomo Doria 22, 129–151.

Griswold, C. E., Long, C., and Hormiga, G. (1999). A new spider of the Genus Pimoa from the Gaoligongshan Mts., Yunnan, China (Araneae, Pimoidae). Acta Botanica Yunnanica 11, 91–97.

Holm, A. (1979). A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae), with descriptions of a new genus and two new species of Pelecopsis from Kenya. Zoologica Scripta 8, 255–278.
A taxonomic study of European and East African species of the genera Pelecopsis and Trichopterna (Araneae, Linyphiidae), with descriptions of a new genus and two new species of Pelecopsis from Kenya.Crossref | GoogleScholarGoogle Scholar |

Hormiga, G. (1994). A revision and cladistic analysis of the spider family Pimoidae (Araneae: Araneoidea). Smithsonian Contributions to Zoology 549, 1–104.
A revision and cladistic analysis of the spider family Pimoidae (Araneae: Araneoidea).Crossref | GoogleScholarGoogle Scholar |

Hormiga, G. (2000). Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae). Smithsonian Contributions to Zoology 609, 1–160.
Higher level phylogenetics of erigonine spiders (Araneae, Linyphiidae, Erigoninae).Crossref | GoogleScholarGoogle Scholar |

Hormiga, G. (2002). Orsonwelles, a new genus of giant linyphiid spiders (Araneae) from the Hawaiian Islands. Invertebrate Systematics 16, 369–448.
Orsonwelles, a new genus of giant linyphiid spiders (Araneae) from the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

Hormiga, G., and Lew, S. (2014). A new American species of the spider genus Pimoa (Araneae, Pimoidae). Zootaxa 3827, 95–100.
A new American species of the spider genus Pimoa (Araneae, Pimoidae).Crossref | GoogleScholarGoogle Scholar |

Isaia, M., and Pantini, P. (2007). A new species of Troglohyphantes (Araneae, Linyphiidae) from the western Italian Alps. The Journal of Arachnology 35, 427–431.
A new species of Troglohyphantes (Araneae, Linyphiidae) from the western Italian Alps.Crossref | GoogleScholarGoogle Scholar |

Isaia, M., Lana, E., and Badino, G. (2007a). Studio ecologico delle araneocenosi delle grotte piemontesi. Atti del XVI Congresso Nazionale S.It.E. “Cambiamenti globali, diversita ecologica e sostenibilita”, Viterbo-Civitavecchia 30, 1–17.

Isaia, M., Pantini, P., Beikes, S., and Badino, G. (2007b). Catalogo ragionato dei ragni (Arachnida, Araneae) del Piemonte e della Lombardia. Memorie dell’Associazione Naturalistica Piemontese 9, 1–161.

Isaia, M., Giachino, P. M., Sapino, E., Casale, A., and Badino, G. (2011a). Conservation value of artificial subterranean systems: a case study in an abandoned mine in Italy. Journal for Nature Conservation 19, 24–33.
Conservation value of artificial subterranean systems: a case study in an abandoned mine in Italy.Crossref | GoogleScholarGoogle Scholar |

Isaia, M., Paschetta, M., Lana, E., Pantini, P., Schőnhofer, A. L., Christian, E., and Badino, G. (2011b). ‘Subterranean Arachnids of the Western Italian Alps (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpiones).’ Monografie XLVII. (Museo Regionale di Scienze Naturali: Torino, Italy.)

Isaia, M., Paschetta, M., Gobbi, M., Zapparoli, M., Chiarle, A., and Taglianti, A. v. (2014). Stand maturity affects positively ground-dwelling arthropods in a protected beech forest. Annals of Forest Science 72, 415–424.
Stand maturity affects positively ground-dwelling arthropods in a protected beech forest.Crossref | GoogleScholarGoogle Scholar |

Isaia, M., Paschetta, M., and Chiarle, A. (2015). Annotated checklist of the spiders (Arachnida, Araneae) of the Site of Community Importance and Special Area of Conservation “Alpi Marittime” (NW Italy). Zoosystema 37, 57–114.
Annotated checklist of the spiders (Arachnida, Araneae) of the Site of Community Importance and Special Area of Conservation “Alpi Marittime” (NW Italy).Crossref | GoogleScholarGoogle Scholar |

Jackson, A. R. (1926). A list of spiders found by Mr H. Donisthorpe at Bordighera in northern Italy. Entomologist’s Record and Journal of Variation 38, 26–28.

Jocqué, R. and Dippenaar-Schoeman, A. (2006). ‘Spider Families of the World.’ (Royal Museum for Central Africa: Tervuren.)

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2ltrzN&md5=3156a1313c249fc018c0d776fccb039dCAS |

Lana, E. (2001). ‘Biospeleologia del Piemonte. Atlante Fotografico Sistematico.’ (Associazione Gruppi Speleologici Piemontesi, Ed. “La Grafica Nuova”: Torino, Italy.)

Lana, E. (2005). Relazione biospeleologica. Mondo Ipogeo 16, 169–199.

Lana, E., Giachino, P.M., and Casale, A. (2001). Attività biospeleologica 2000. Grotte. Bollettino del Gruppo Speleologico Piemontese, GSP CAI-UGET 135, 50–54.

Lana, E., Casale, A., and Giachino, P. M. (2002). Attività biospeleologica 2001. Grotte. Bollettino del Gruppo Speleologico Piemontese, GSP CAI-UGET 137, 35–39.

Lana, E., Casale, A., and Giachino, P. M. (2003). Attività biospeleologica 2002. Grotte. Bollettino del Gruppo Speleologico Piemontese, GSP CAI-UGET 139, 14–21.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=f31991d546b9407c9c5b7aa3e900acc9CAS |

Le Peru, B. (2007). Catalogue et répartition des araignées de France. Revue Arachnologique 16, 1–468.

Lessona, M. (1878). Dei Pipistrelli in Piemonte. Atti della Reale Accademia della Scienze di Torino 13, 429–439.

Mammola, S., and Isaia, M. (2014). Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history. International Journal of Speleology 43, 343–353.
Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history.Crossref | GoogleScholarGoogle Scholar |

Mammola, S., Isaia, M., and Arnedo, M. A. (2015a). Alpine endemic spiders shed light on the origin and evolution of subterranean species. PeerJ 3, e1384.
Alpine endemic spiders shed light on the origin and evolution of subterranean species.Crossref | GoogleScholarGoogle Scholar |

Mammola, S., Piano, E., Giachino, P. M., and Isaia, M. (2015b). Seasonal dynamics and microclimatc preference of two Alpine endemic hypogean beetles. International Journal of Speleology 44, 239–249.
Seasonal dynamics and microclimatc preference of two Alpine endemic hypogean beetles.Crossref | GoogleScholarGoogle Scholar |

Mammola, S., Piano, E., and Isaia, M. (2016). Step back! Niche dynamics in cave-dwelling predators. Acta Oecologica 75, 35–42.
Step back! Niche dynamics in cave-dwelling predators.Crossref | GoogleScholarGoogle Scholar |

Maurer, R., and Thaler, K. (1988). Über bemerkenswerte Spinnen des Parc National du Mercantour (F) und seiner Umgebung (Arachnida: Araneae). Revue Suisse de Zoologie 95, 329–352.
Über bemerkenswerte Spinnen des Parc National du Mercantour (F) und seiner Umgebung (Arachnida: Araneae).Crossref | GoogleScholarGoogle Scholar |

Minelli, A., Ruffo, S., and Vigna Taglianti, A. (2006). The Italian faunal provinces. In ‘Checklist and Distribution of the Italian Fauna’. (Eds S. Ruffo and F. Stoch.) pp. 37–39. (Memorie del Museo Civico di Storia Naturale di Verona: Verona, Italy.)

Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G., and Vogler, A. P. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298–311.
Accelerated species inventory on Madagascar using coalescent-based models of species delineation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqu7%2FO&md5=6c01fe5ea9671bf6b0bc90465f051db6CAS |

Morisi, A. (1969). Il laboratorio sotterraneo di Bossea. Mondo Ipogeo 5, 31–34.

Morisi, A. (1971). Nuovi animali cavernicoli recentemente descritti. Mondo Ipogeo 7, 48–51.

Müller, K. (2005). SeqState – primer design and sequence statistics for phylogenetic DNA data sets. Applied Bioinformatics 4, 65–69.

Nagy, L., Grabherr, G., Körner, C., and Thompson, D. B. (2012). ‘Alpine Biodiversity in Europe.’ Vol. 167. (Springer Science and Business Media: Berlin.)

Paschetta, M., La Morgia, V., Masante, D., Negro, M., Rolando, A., and Isaia, M. (2013). Grazing history influences biodiversity: a case study on ground-dwelling arachnids (Arachnida: Araneae, Opiliones) in the Natural Park of Alpi Marittime (NW Italy). Journal of Insect Conservation 17, 339–356.
Grazing history influences biodiversity: a case study on ground-dwelling arachnids (Arachnida: Araneae, Opiliones) in the Natural Park of Alpi Marittime (NW Italy).Crossref | GoogleScholarGoogle Scholar |

Prous, X., Ferreira, R. S., and Martins, R. P. (2004). Ecotone delimitation: epigean–hypogean transition in cave ecosystems. Austral Ecology 29, 374–382.
Ecotone delimitation: epigean–hypogean transition in cave ecosystems.Crossref | GoogleScholarGoogle Scholar |

Prous, X., Lopes Ferreira, R., and Jacobi, C. M. (2015). The entrance as a complex ecotone in a Neotropical cave. International Journal of Speleology 44, 177–189.
The entrance as a complex ecotone in a Neotropical cave.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Schmid, S. M., and Kissling, E. (2000). The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19, 62–85.
The arc of the western Alps in the light of geophysical data on deep crustal structure.Crossref | GoogleScholarGoogle Scholar |

Simmons, M. P., and Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=b52edc76bb51f8feeaa87526853d2757CAS |

Simon, E. (1884). Les arachnides de France. Paris 5, 180–885.

Simon, E. (1929). Les arachnides de France. Synopsis générale et catalogue des espèces françaises de l’ordre des Araneae. Paris 6, 533–772.

Sket, B. (2008). Can we agree on an ecological classification of subterranean animals? Journal of Natural History 42, 1549–1563.
Can we agree on an ecological classification of subterranean animals?Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=75f7f4dcbee031d89a4fac72e69aca2fCAS |

Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.
| 1:CAS:528:DyaK3sXhslSrsQ%3D%3D&md5=9bce65f69541e08d13d2814012941501CAS |

Thaler, K. (1976). Two remarkable relict arachnids from northern Italy: Sabacon simoni Dresco (Opiliones: Ischyropsalididae), Louisfagea rupicola (Simon) (Araneae: Tetragnathidae). Bulletin of the British Arachnological Society 3, 205–210.

Trotta, A. (2009). Pimoa thaleri, a new species of the genus Pimoa Chamberlin and Ivie, 1943 from India (Araneae: Pimoidae). Contributions to Natural History 12, 1403–1407.

Villemant, C., Daugeron, C., Gargominy, O., Isaia, M., Deharveng, L., and Judson, M. L. (2015). The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679.
The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects.Crossref | GoogleScholarGoogle Scholar |

Wang, Q., Li, S., Wang, R., and Parquin, P. (2008). Phylogeographic analysis of Pimoidae (Arachnida: Araneae) inferred from mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA gene regions. Journal of Zoological Systematics and Evolutionary Research 46, 96–104.
Phylogeographic analysis of Pimoidae (Arachnida: Araneae) inferred from mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA gene regions.Crossref | GoogleScholarGoogle Scholar |

World Spider Catalog (2016). World Spider Catalog, version 17.0. Available at: http://wsc.nmbe.ch

Xu, X., and Li, S. Q. (2007). Taxonomic study of the spider family Pimoidae (Arachnida: Araneae) from China. Zoological Studies (Taipei, Taiwan) 46, 483–502.

Xu, X., and Li, S. Q. (2009). Three new pimoid spiders from Sichuan Province, China (Araneae: Pimoidae). Zootaxa 2298, 55–63.