Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps
N. G. Wilson A B D and L. A. Kirkendale A CA Western Australian Museum, Molecular Systematics Unit, Aquatic Zoology, Locked Bag 49, Welshpool DC, WA 6986, Australia.
B University of Western Australia, School of Animal Biology, Crawley, WA 6009, Australia.
C Murdoch University, School of Veterinary and Life Sciences, Murdoch, WA 6150, Australia.
D Corresponding author. Email: nerida.wilson@museum.wa.gov.au
Invertebrate Systematics 30(1) 86-94 https://doi.org/10.1071/IS15032
Submitted: 30 June 2015 Accepted: 21 December 2015 Published: 16 March 2016
Abstract
The Indo-Pacific is an extremely large marine realm that unites two oceans via a restricted Coral Triangle corridor, which was historically subjected to lowered sea levels during global glaciation. Although a strong phylogeographic focus on the Central and West Pacific has produced a large body of research, the Indian Ocean has been largely neglected. This may have serious consequences, because the Indian Ocean hosts a large number of marine centres of endemism, yet a large number of nations rely on its marine resources. We examine reasons for this neglect and review what is known about this region and its connectivity to the Indo-West Pacific. We draw attention to the ‘Leeuwin Effect’, a phenomenon where the southward flow of the Leeuwin Current is responsible for transporting larval propagules from the Coral Triangle region down the coast of Western Australia, resulting in broader Indo-West Pacific rather than Indian Ocean affinities. Given challenges in accessing infrastructure and samples, collaboration will inevitably be key to resolving data gaps. We challenge the assumption that the peak of shallow-water marine biodiversity is solely centred in the Coral Triangle, and raise awareness of a seemingly forgotten hypothesis promoting a secondary peak of biodiversity in the western Indian Ocean.
References
Anderson, F. E., Engelke, R., Jarrett, K., Valinassab, T., Mohamed, K. S., Asokan, P. K., Zacharia, P. U., Nootmorn, P., Chotiyaputta, C., and Dunning, M. (2011). Phylogeny of the Sepia pharaonis species complex (Cephalopoda: Sepiida) based on analyses of mitochondrial and nuclear DNA sequence data. The Journal of Molluscan Studies 77, 65–75.| Phylogeny of the Sepia pharaonis species complex (Cephalopoda: Sepiida) based on analyses of mitochondrial and nuclear DNA sequence data.Crossref | GoogleScholarGoogle Scholar |
Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, N. L., Cairns, S. D., Chan, T.-Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J. F., Dawson, M. N., De Clerck, D., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H. J. M., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K. L., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C. B., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Seth, , Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W. M., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., and Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
| The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtb7K&md5=a94f52d1a66a8f4c6b252541a2273749CAS | 23159596PubMed |
Avise, J. C. (1989). A role for molecular genetics in the recognition and conservation of endangered species. Trends in Ecology & Evolution 4, 279–281.
| A role for molecular genetics in the recognition and conservation of endangered species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFCmug%3D%3D&md5=206034b3432b6a65ab05a4550131ff13CAS |
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
| Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.Crossref | GoogleScholarGoogle Scholar |
Bailey, G. (2010). The Red Sea, coastal landscapes, and hominin dispersals. In ‘The Evolution of Human Populations in Arabia’. (Eds M. D. Petraglia and J. I. Rose.) pp. 15–37. (Springer: Netherlands.)
Barber, P. H., and Meyer, C. P. (2015). Pluralism explains diversity in the Coral Triangle. In ‘Ecology of Fishes on Coral Reefs’. (Ed C. Mora.) pp. 258–263. (Cambridge University Press: Cambridge.)
Barber, P. H., Erdmann, M. V., and Palumbi, S. R. (2006). Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle. Evolution 60, 1825–1839.
| Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the coral triangle.Crossref | GoogleScholarGoogle Scholar | 17089967PubMed |
Benzie, J. A. (1999). Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations in the Indian and Pacific Oceans. Evolution 53, 1782–1795.
| Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations in the Indian and Pacific Oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtV2ltw%3D%3D&md5=d8eff5853ec23ec7b2962a29112c77feCAS |
Benzie, J. A. H., and Stoddart, J. A. (1992). Genetic structure of crown-of-thorns starfish (Acanthaster planci) in Australia. Marine Biology 112, 631–639.
| Genetic structure of crown-of-thorns starfish (Acanthaster planci) in Australia.Crossref | GoogleScholarGoogle Scholar |
Benzie, J. A. H., Ballment, E., Forbes, A. T., Demetriades, N. T., Sugama, K., and Moria, S. (2002). Mitochondrial DNA variation in Indo‐Pacific populations of the giant tiger prawn, Penaeus monodon. Molecular Ecology 11, 2553–2569.
| Mitochondrial DNA variation in Indo‐Pacific populations of the giant tiger prawn, Penaeus monodon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpsl2msLw%3D&md5=9fa8c0bde2c277166dd268fb0e5a5e19CAS |
Borsa, P., Sembiring, A., Fauvelot, C., and Chen, W. J. (2014a). Resurrection of Indian Ocean humbug damselfish, Dascyllus abudafur (Forsskål) from synonymy with its Pacific Ocean sibling, Dascyllus aruanus (L.). Comptes Rendus Biologies 337, 709–716.
| Resurrection of Indian Ocean humbug damselfish, Dascyllus abudafur (Forsskål) from synonymy with its Pacific Ocean sibling, Dascyllus aruanus (L.).Crossref | GoogleScholarGoogle Scholar | 25433563PubMed |
Borsa, P., Fauvelot, C., Tiavouane, J., Grulois, D., Wabnitz, C., Naguit, M. A., and Andréfouët, S. (2014b). Distribution of Noah’s giant clam, Tridacna noae. Marine Biodiversity 45, 339–344.
| Distribution of Noah’s giant clam, Tridacna noae.Crossref | GoogleScholarGoogle Scholar |
Borsa, P., Fauvelot, C., Andréfouët, S., Chai, T.-T., Kubo, H., and Liu, L.-L. (2015). On the validity of Noah’s giant clam Tridacna noae (Röding, 1798) and its synonymy with the Ningaloo giant clam Tridacna ningaloo Penny & Willan, 2014. The Raffles Bulletin of Zoology 63, 484–489.
Bouchet, P., Héros, V., Lozouet, P., and Maestrati, P. (2008). A quarter-century of deep-sea malacological exploration in the South and West Pacific: Where do we stand? How far to go. Tropical Deep-Sea Benthos 25, 9–40.
Bowen, B. W., Rocha, L. A., Toonen, R. J., Karl, S. A., ToBo Laboratory (2013). The origins of tropical marine biodiversity. Trends in Ecology & Evolution 28, 359–366.
| The origins of tropical marine biodiversity.Crossref | GoogleScholarGoogle Scholar |
Briggs, J. C. (1995). ‘Global Biogeography.’ (Elsevier: Netherlands.)
Burke, L., Reytar, K., Spalding, M., and Perry, A. (2011). ‘Reefs at Risk Revisited.’ (World Resources Institute: Washington, DC.)
Caputi, N., Fletcher, W. J., Pearce, A., and Chubb, C. F. (1996). Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the Western Australian coast. Marine and Freshwater Research 47, 147–155.
| Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the Western Australian coast.Crossref | GoogleScholarGoogle Scholar |
Carpenter, K. E., Barber, P. H., Crandall, E. D., Ablan-Lagman, M. C. A., Mahardika, G. N., Manjaji-Matsumoto, B. M., Juinio-Meñez, M. A., Santos, M. D., Starger, C. J., and Toha, A. H. A. (2011). Comparative phylogeography of the Coral Triangle and implications for marine management. Journal of Marine Biology 2011, 396982.
Crandall, E. D., Frey, M. A., Grosberg, R. K., and Barber, P. H. (2008a). Contrasting demographic history and phylogeographical patterns in two Indo‐Pacific gastropods. Molecular Ecology 17, 611–626.
| Contrasting demographic history and phylogeographical patterns in two Indo‐Pacific gastropods.Crossref | GoogleScholarGoogle Scholar | 18179436PubMed |
Crandall, E. D., Jones, M. E., Munoz, M. M., Akinronbi, B., Erdmann, M. V., and Barber, P. H. (2008b). Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle. Molecular Ecology 17, 5276–5290.
| Comparative phylogeography of two seastars and their ectosymbionts within the Coral Triangle.Crossref | GoogleScholarGoogle Scholar | 19067797PubMed |
Crandall, E. D., Treml, E. A., Liggins, L., Gleeson, L., Yasuda, N., Barber, P. H., Wörheide, G., and Riginos, C. (2014). Return of the ghosts of dispersal past: historical spread and contemporary gene flow in the blue sea star Linckia laevigata. Bulletin of Marine Science 90, 399–425.
Crawford, T. J., and Crawford, B. J. (2007). Linckia multifora (Echinodermata: Asteroidea) in Rarotonga, Cook Islands: reproductive mechanisms and ecophenotypes. Pacific Science 61, 371–381.
| Linckia multifora (Echinodermata: Asteroidea) in Rarotonga, Cook Islands: reproductive mechanisms and ecophenotypes.Crossref | GoogleScholarGoogle Scholar |
Cresswell, G. R., and Golding, T. J. (1980). Observations of a south-flowing current in the southeastern Indian Ocean. Deep-Sea Research. Part A, Oceanographic Research Papers 27, 449–466.
| Observations of a south-flowing current in the southeastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
D’Adamo, N., Fandry, C., Buchan, S., and Domingues, C. (2009). Northern sources of the Leeuwin current and the “Holloway Current” on the North West Shelf. Journal of the Royal Society of Western Australia 92, 53–66.
Degnan, S. M., Imron, , Geiger, D. L., and Degnan, B. M. (2006). Evolution in temperate and tropical seas: disparate patterns in Southern Hemisphere abalone (Mollusca: Vetigastropoda: Haliotidae). Molecular Phylogenetics and Evolution 41, 249–256.
| Evolution in temperate and tropical seas: disparate patterns in Southern Hemisphere abalone (Mollusca: Vetigastropoda: Haliotidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVWksL8%3D&md5=901db53e878084156cddd03f269773ebCAS | 16905336PubMed |
DiBattista, J. D., Berumen, M. L., Gaither, M. R., Rocha, L. A., Eble, J. A., Choat, J. H., Craig, M. T., Skillings, D. J., and Bowen, B. W. (2013). After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. Journal of Biogeography 40, 1170–1181.
| After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
DiBattista, J. D., Berumen, M. L., Gaither, M. R., Rocha, L. A., Eble, J. A., Choat, J. H., Craig, M. T., Skillings, D. J., and Bowen, B. W. (2015a). When biogeographical provinces collide: hybridization of reef fishes at the crossroads of marine biogeographical provinces in the Arabian Sea. Journal of Biogeography 42, 1601–1614.
| When biogeographical provinces collide: hybridization of reef fishes at the crossroads of marine biogeographical provinces in the Arabian Sea.Crossref | GoogleScholarGoogle Scholar |
DiBattista, J. D., Howard Choat, J., Gaither, M. R., Hobbs, J. P. A., Lozano‐Cortés, D. F., Myers, R. F., Paulay, G., Rocha, L. A., Tooned, R. J., Westneat, M. W., and Berumen, M. L. (2015b). On the origin of endemic species in the Red Sea. Journal of Biogeography , .
| On the origin of endemic species in the Red Sea.Crossref | GoogleScholarGoogle Scholar |
Duda, T. F., and Palumbi, S. R. (1999). Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Marine Biology 134, 705–710.
| Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations.Crossref | GoogleScholarGoogle Scholar |
Fleminger, A. (1985). The Pleistocene equatorial barrier between the Indian and Pacific Oceans and a likely cause for Wallace’s line. UNESCO Technical Papers in Marine Science 49, 84–97.
Galloway, R. W., and Kemp, E. M. (1981). Late Cainozoic environments in Australia. In ‘Ecological Biogeography in Australia’. (Ed A. Keast.) pp. 51–80. (Springer: Netherlands.)
Gopurenko, D., and Hughes, J. M. (2002). Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea: Decapoda): evidence from mitochondrial DNA. Marine and Freshwater Research 53, 849–857.
| Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea: Decapoda): evidence from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xoslenur4%3D&md5=5f4098cf157a3a386de93bc0ae5ab1a4CAS |
Gopurenko, D., Hughes, J. M., and Keenan, C. P. (1999). Mitochondrial DNA evidence for rapid colonisation of the Indo–West Pacific by the mudcrab Scylla serrata. Marine Biology 134, 227–233.
| Mitochondrial DNA evidence for rapid colonisation of the Indo–West Pacific by the mudcrab Scylla serrata.Crossref | GoogleScholarGoogle Scholar |
Gopurenko, D., Hughes, J. M., and Bellchambers, L. (2003). Colonisation of the south-west Australian coastline by mud crabs: evidence for a recent range expansion or human-induced translocation? Marine and Freshwater Research 54, 833–840.
| Colonisation of the south-west Australian coastline by mud crabs: evidence for a recent range expansion or human-induced translocation?Crossref | GoogleScholarGoogle Scholar |
Griffin, D. J. G. (1974). ‘Spider crabs (Crustacea: Brachyura: Majidae) from the International Indian Ocean Expedition 1963–1964.’ (Smithsonian Institution Press.)
Hoareau, T. B., Boissin, E., Paulay, G., and Bruggemann, J. H. (2013). The southwestern Indian Ocean as a potential marine evolutionary hotspot: perspectives from comparative phylogeography of reef brittle‐stars. Journal of Biogeography 40, 2167–2179.
| The southwestern Indian Ocean as a potential marine evolutionary hotspot: perspectives from comparative phylogeography of reef brittle‐stars.Crossref | GoogleScholarGoogle Scholar |
Hobbs, J. P. A., Frisch, A. J., Allen, G. R., and Van Herwerden, L. (2009). Marine hybrid hotspot at Indo-Pacific biogeographic border. Biology Letters 5, 258–261.
| Marine hybrid hotspot at Indo-Pacific biogeographic border.Crossref | GoogleScholarGoogle Scholar |
Hoeksema, B. W. (2007). Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In ‘Biogeography, Time, and Place: Distributions, Barriers, and Islands’. (Ed. W. Renema.) pp. 117–178. (Springer: Netherlands.)
Hood, R. R., McPhaden, M. J., and Urban, E. (2014). New Indian Ocean program builds on a scientific legacy. Eos, Transactions American Geophysical Union 95, 349–350.
Hubert, N., Meyer, C. P., Bruggemann, H. J., Guerin, F., Komeno, R. J., Espiau, B., Causse, R., Williams, J. T., and Planes, S. (2012). Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS One 7, e28987.
| Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslaht7g%3D&md5=021d27193adac7444ecb2e1d5d578aefCAS | 22438862PubMed |
Huelsken, T., Keyse, J., Liggins, L., Penny, S., Treml, E. A., and Riginos, C. (2013). A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS One 8, e80858.
| A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 24278333PubMed |
Jokiel, P., and Martinelli, F. J. (1992). The vortex model of coral reef biogeography. Journal of Biogeography 19, 449–458.
| The vortex model of coral reef biogeography.Crossref | GoogleScholarGoogle Scholar |
Juinio-Menez, M. A., Magsino, R. M., Ravago-Gotanco, R., and Yu, E. T. (2003). Genetic structure of Linckia laevigata and Tridacna crocea populations in the Palawan shelf and shoal reefs. Marine Biology 142, 717–726.
Keyse, J., Crandall, E. D., Toonen, R. J., Meyer, C. P., Treml, E. A., and Riginos, C. (2014). The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region. Bulletin of Marine Science 90, 47–78.
| The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region.Crossref | GoogleScholarGoogle Scholar |
Kirkendale, L. A., and Meyer, C. P. (2004). Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal‐driven marine system. Molecular Ecology 13, 2749–2762.
| Phylogeography of the Patelloida profunda group (Gastropoda: Lottidae): diversification in a dispersal‐driven marine system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlemurg%3D&md5=63e2a0efa30aa8ad5ec73b695097e242CAS | 15315686PubMed |
Kirkendale, L. A., and Paulay, G. (in press). Photosymbiosis in Bivalvia. In ‘Treatise on Invertebrate Paleontology: Part N, Mollusca X (Bivalve X of X), Treatise on Invertebrate Paleontology, XXX’. (The Geological Society of America, Inc. and The University of Kansas.)
Kochzius, M., Seidel, C., Hauschild, J., Kirchhoff, S., Mester, P., Meyer-Wachsmuth, I., Nuryanto, A., and Timm, J. (2009). Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina. Marine Ecology Progress Series 396, 211–219.
| Genetic population structures of the blue starfish Linckia laevigata and its gastropod ectoparasite Thyca crystallina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGjsbk%3D&md5=1ea2e19ee16f7567ca4ffa043315d91eCAS |
Kool, J. T., Paris, C. B., Barber, P. H., and Cowen, R. K. (2011). Connectivity and the development of population genetic structure in Indo‐West Pacific coral reef communities. Global Ecology and Biogeography 20, 695–706.
| Connectivity and the development of population genetic structure in Indo‐West Pacific coral reef communities.Crossref | GoogleScholarGoogle Scholar |
Lai, J. C., Ng, P. K. L., and Davie, P. J. F. (2010). A revision of the Portunus pelagicus (Linnaeus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. The Raffles Bulletin of Zoology 58, 199–237.
Lambeck, K. (1996). Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters 142, 43–57.
| Shoreline reconstructions for the Persian Gulf since the last glacial maximum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVKhtL0%3D&md5=bed9edeefe34587313cf50b09789f993CAS |
Lavery, S., Moritz, C., and Fielder, D. R. (1996). Indo‐Pacific population structure and evolutionary history of the coconut crab Birgus latro. Molecular Ecology 5, 557–570.
| Indo‐Pacific population structure and evolutionary history of the coconut crab Birgus latro.Crossref | GoogleScholarGoogle Scholar |
Lessios, H. A., Kessing, B. D., and Pearse, J. S. (2001). Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55, 955–975.
| Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFelu7c%3D&md5=1ecd416a01407a01c2aaad5e78a4a1acCAS | 11430656PubMed |
Lessios, H. A., Kane, J., and Robertson, D. R. (2003). Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57, 2026–2036.
| Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svpsl2qtA%3D%3D&md5=c4c2435c75f458a4432e7c2d6221f4baCAS | 14575324PubMed |
Liu, S. Y. V., Chang, F. T., Borsa, P., Chen, W. J., and Dai, C. F. (2014). Phylogeography of the humbug damselfish, Dascyllus aruanus (Linnaeus, 1758): evidence of Indo‐Pacific vicariance and genetic differentiation of peripheral populations. Biological Journal of the Linnean Society. Linnean Society of London 113, 931–942.
| Phylogeography of the humbug damselfish, Dascyllus aruanus (Linnaeus, 1758): evidence of Indo‐Pacific vicariance and genetic differentiation of peripheral populations.Crossref | GoogleScholarGoogle Scholar |
Lukoschek, V., Waycott, M., and Marsh, H. (2007). Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Molecular Ecology 16, 3406–3422.
| Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjsb3K&md5=38430a97f9c4753809a1f7790bab4f22CAS | 17688542PubMed |
Magsino, R. M., Ravago, R. G., and Juinio-Menez, M. A. (2002). Genetic relationship of Linckia laevigata color morphs in the Kalayaan Islands Group, western Philippines: preliminary evidence. In ‘Proceedings of the 9th International Coral Reef Symposium’. Vol. 1, pp. 113–120. (Bali, Indonesia.)
McClanahan, T. R. (Ed.) (2000). ‘Coral Reefs of the Indian Ocean: Their Ecology and Conservation.’ (Oxford University Press: USA.)
McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D. M., and Shafik, S. (1997). Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 19–40.
| Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene.Crossref | GoogleScholarGoogle Scholar |
Mcmillan, W. O., and Palumbi, S. R. (1995). Concordant evolutionary patterns among Indo-West Pacific butterflyfishes. Proceedings of the Royal Society of London. Series B, Biological Sciences 260, 229–236.
| Concordant evolutionary patterns among Indo-West Pacific butterflyfishes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzgtlyqsQ%3D%3D&md5=bc3d6a31188047d3196236b05102ee36CAS |
Meyer, C. P., Geller, J. B., and Paulay, G. (2005). Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125.
| Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods.Crossref | GoogleScholarGoogle Scholar | 15792232PubMed |
Mirams, A. G. K., Treml, E. A., Shields, J. L., Liggins, L., and Riginos, C. (2011). Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge. Coral Reefs 30, 937–949.
| Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge.Crossref | GoogleScholarGoogle Scholar |
Obura, D. (2012). The diversity and biogeography of western Indian Ocean reef-building corals. PLoS One 7, e45013.
| The diversity and biogeography of western Indian Ocean reef-building corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWltrjF&md5=0cd0df2b8d9c2a056a531137b2d2e0baCAS | 23028737PubMed |
Penny, S. S., and Willan, R. C. (2014). Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia. Molluscan Research 34, 201–211.
| Description of a new species of giant clam (Bivalvia: Tridacnidae) from Ningaloo Reef, Western Australia.Crossref | GoogleScholarGoogle Scholar |
Poore, G. C. B., Avery, L., Blażewicz-Paszkowycz, M., Browne, J., Bruce, N. L., Gerken, S., Glasby, C., Greaves, E., McCallum, A., Staples, D., Syme, A., Taylor, J., Walker-Smith, G., Warne, M., Watson, C., Williams, A., Wilson, R. S., and Woolley, S. (2015). Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity. Marine Biodiversity 45, 271–286.
| Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity.Crossref | GoogleScholarGoogle Scholar |
Reid, D. G., Lal, K., Mackenzie‐Dodds, J., Kaligis, F., Littlewood, D. T. J., and Williams, S. T. (2006). Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo‐West Pacific. Journal of Biogeography 33, 990–1006.
| Comparative phylogeography and species boundaries in Echinolittorina snails in the central Indo‐West Pacific.Crossref | GoogleScholarGoogle Scholar |
Richards, Z. T., Garcia, R. A., Wallace, C. C., Rosser, N. L., and Muir, P. R. (2015). A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia). PLoS One 10, e0117791.
| A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia).Crossref | GoogleScholarGoogle Scholar | 25714443PubMed |
Ridgway, K. R., and Condie, S. A. (2004). The 5500‐km‐long boundary flow off western and southern Australia. Journal of Geophysical Research: Oceans 109, C04017.
| The 5500‐km‐long boundary flow off western and southern Australia.Crossref | GoogleScholarGoogle Scholar |
Ridgway, T., and Sampayo, E. M. (2007). Population genetic status of the western Indian Ocean: what do we know? Western Indian Ocean Journal of Marine Science 4, 1–10.
| Population genetic status of the western Indian Ocean: what do we know?Crossref | GoogleScholarGoogle Scholar |
Roberts, C. M., McClean, C. J., Veron, J. E., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C., and Werner, T. B. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284.
| Marine biodiversity hotspots and conservation priorities for tropical reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVGhsr8%3D&md5=3c33bc9f5e46f8ff049c12771a04df3cCAS | 11847338PubMed |
Schneider, J. A., and Ó Foighil, D. (1999). Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Molecular Phylogenetics and Evolution 13, 59–66.
| 1:CAS:528:DyaK1MXmt1Omsb8%3D&md5=850de54e1aaf1307fa56fa050c492575CAS | 10508539PubMed |
Sheppard, C. R. C. (1981). The reef and soft-substrate coral fauna of Chagos, Indian Ocean. Journal of Natural History 15, 607–621.
| The reef and soft-substrate coral fauna of Chagos, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
Sheppard, A. L. (1984). The molluscan fauna of Chagos (Indian Ocean) and an analysis of its broad distribution patterns. Coral Reefs 3, 43–50.
| The molluscan fauna of Chagos (Indian Ocean) and an analysis of its broad distribution patterns.Crossref | GoogleScholarGoogle Scholar |
Sheppard, C. R C., Ateweberhan, M., Bowen, B. W., Carr, P., Chen, C. A., Clubbe, C., Craig, M. T., Ebinghaus, R., Eble, J., Fitzsimmons, N., Gaither, M. R., Gan, C.-H., Gollock, M., Guzman, N., Graham, N. A. J., Harris, A., Jones, R., Keshavmurthy, S., Koldewey, H., Lundin, C. G., Mortimer, J. A., Obura, D., Pfeiffer, M., Price, A. R. G., Purkis, S., Raines, P., Readman, J. W., Riegl, B., Rogers, A., Schleyer, M., Seaward, M. R. D., Sheppard, A. L. S., Tamelander, J., Turner, J. R., Visram, S., Vogler, C., Vogt, S., Wolschke, H., Yang, J. M.-C., Yang, S.-Y., and Yesson, C. (2012). Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no‐take marine protected area. Aquatic Conservation: Marine and Freshwater Ecosystems 22, 232–261.
Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmelzer, I., and Smeed, D. A. (2003). Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858.
| Sea-level fluctuations during the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Kmtbw%3D&md5=f1109a77df473399334627f30d5d49e1CAS | 12815427PubMed |
Smeed, D. A. (2004). Exchange through the Bab el Mandab. Deep-sea Research. Part II, Topical Studies in Oceanography 51, 455–474.
| Exchange through the Bab el Mandab.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1eiurs%3D&md5=5a6fd81f6a0aea36e1cfe01bae8a5f3eCAS |
Su, Y., Hung, J. H., Kubo, H., and Liu, L. L. (2014). Tridacna noae (Röding, 1798) – a valid giant clam species separated from T. maxima (Röding, 1798) by morphological and genetic data. The Raffles Bulletin of Zoology 62, 124–135.
Teske, P. R., Von der Heyden, S., McQuaid, C. D., and Barker, N. P. (2011). A review of marine phylogeography in southern Africa. South African Journal of Science 107, 43–53.
| A review of marine phylogeography in southern Africa.Crossref | GoogleScholarGoogle Scholar |
Treml, E. A., and Halpin, P. N. (2012). Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle. Conservation Letters 5, 441–449.
| Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle.Crossref | GoogleScholarGoogle Scholar |
Uthicke, S., and Benzie, J. A. H. (2003). Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo‐Pacific. Molecular Ecology 12, 2635–2648.
| Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo‐Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Kqurs%3D&md5=41d5cf8a520f03d32df0dd67a8748a75CAS | 12969467PubMed |
Veron, J. E. N. (1995). ‘Corals in Space and Time: the Biogeography and Evolution of the Scleractinia.’ (UNSW Press: Sydney.)
Vogler, C., Benzie, J., Lessios, H., Barber, P., and Wörheide, G. (2008). A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biology Letters 4, 696–699.
| A threat to coral reefs multiplied? Four species of crown-of-thorns starfish.Crossref | GoogleScholarGoogle Scholar | 18832058PubMed |
Vogler, C., Benzie, J., Barber, P. H., Erdmann, M. V., Ambariyanto, S. C., Tenggardjaja, K., Gérard, K., and Wörheide, G. (2012). Phylogeography of the crown-of-thorns starfish in the Indian Ocean. PLoS One 7, e43499.
| Phylogeography of the crown-of-thorns starfish in the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gns7bM&md5=4c414af34096b0d82628801c7941b472CAS | 22927975PubMed |
Vogler, C., Benzie, J. A. H., Tenggardjaja, K., Barber, P. H., and Wörheide, G. (2013). Phylogeography of the crown-of-thorns starfish: genetic structure within the Pacific species. Coral Reefs 32, 515–525.
| Phylogeography of the crown-of-thorns starfish: genetic structure within the Pacific species.Crossref | GoogleScholarGoogle Scholar |
von der Heyden, S., Beger, M., Toonen, R. J., van Herwerden, L., Juinio-Meñez, M. A., Ravago-Gotanco, R., Fauvelot, C., and Bernardi, G. (2014). The application of genetics to marine management and conservation: examples from the Indo-Pacific. Bulletin of Marine Science 90, 123–158.
| The application of genetics to marine management and conservation: examples from the Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |
Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
| Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |
Abdul Wahab, M, Fromont, J., Whalan, S., Webster, N., and Andreakis, N. (2014). Combining morphometrics with molecular taxonomy: how different are similar foliose keratose sponges from the Australian tropics? Molecular Phylogenetics and Evolution 73, 23–39.
| Combining morphometrics with molecular taxonomy: how different are similar foliose keratose sponges from the Australian tropics?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2czntVCktg%3D%3D&md5=948d5e1ac72450c7267e72148c4c585fCAS | 24445018PubMed |
Williams, S. T. (2000). Species boundaries in the starfish genus Linckia. Marine Biology 136, 137–148.
| Species boundaries in the starfish genus Linckia.Crossref | GoogleScholarGoogle Scholar |
Williams, S. T., and Benzie, J. A. H. (1997). Indo‐West Pacific patterns of genetic differentiation in the high‐dispersal starfish Linckia laevigata. Molecular Ecology 6, 559–573.
| Indo‐West Pacific patterns of genetic differentiation in the high‐dispersal starfish Linckia laevigata.Crossref | GoogleScholarGoogle Scholar |
Williams, S. T., and Benzie, J. A. H. (1998). Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52, 87–99.
| Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data.Crossref | GoogleScholarGoogle Scholar |
Williams, S. T., Jara, J., Gomez, E., and Knowlton, N. (2002). The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes. Integrative and Comparative Biology 42, 941–952.
| The marine Indo-West Pacific break: contrasting the resolving power of mitochondrial and nuclear genes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhtlGmtQ%3D%3D&md5=76e87e600babed8ff7adc447f6ae4864CAS | 21680374PubMed |
Williams, A., Althaus, F., Dunstan, P. K., Poore, G. C. B., Bax, N. J., Kloser, R. J., and McEnnulty, F. R. (2010). Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Marine Ecology (Berlin) 31, 222–236.
| Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths).Crossref | GoogleScholarGoogle Scholar |
Williams, S., Apte, D., Ozawa, T., Kaligis, F., and Nakano, T. (2011). Speciation and dispersal along continental coastlines and island arcs in the Indo‐West Pacific turbinid gastropod genus Lunella. Evolution 65, 1752–1771.
| Speciation and dispersal along continental coastlines and island arcs in the Indo‐West Pacific turbinid gastropod genus Lunella.Crossref | GoogleScholarGoogle Scholar | 21644961PubMed |
Wilson, B. (2013). ‘The Biogeography of the Australian North West Shelf: Environmental Change and Life’s Response.’ (Elsevier: Newnes.)
Wood, S., Paris, C. B., Ridgwell, A., and Hendy, E. J. (2014). Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecology and Biogeography 23, 1–11.
| Modelling dispersal and connectivity of broadcast spawning corals at the global scale.Crossref | GoogleScholarGoogle Scholar |
Yonow, N. (2015). Sea slugs: unexpected biodiversity and distribution. In ‘The Red Sea’. (Eds N. M. A. Rasul and I. C. F. Stewart.) pp. 531–550. (Springer Berlin: Heidelberg.)