Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Morphological phylogenetics of the Tenthredinidae (Insecta : Hymenoptera)

Lars Vilhelmsen
+ Author Affiliations
- Author Affiliations

Natural History Museum of Denmark, Universitetsparken 15, DK-2100, Denmark. Email: lbvilhelmsen@snm.ku.dk

Invertebrate Systematics 29(2) 164-190 https://doi.org/10.1071/IS14056
Submitted: 23 October 2014  Accepted: 26 January 2015   Published: 11 June 2015

Abstract

The Tenthredinoidea is the most diverse superfamily of non-apocritan Hymenoptera. It is also one of the largest herbivorous groups within the order, some species having substantial economic impact. Until very recently, no comprehensive phylogenetic analyses of the superfamily had been undertaken. This paper presents the largest morphological dataset assembled so far for elucidating the phylogeny of the Tenthredinoidea. In total, 129 taxa were scored for 146 characters from the adult head, thorax, wings and ovipositor apparatus. The emphasis of the taxon sample is on Tenthredinidae (104 terminals), which is by far the largest family in the Tenthredinoidea. The results of the cladistic analyses confirm the monophyly of the Tenthredinoidea, the first split being between the Blasticotomidae and the remaining families (Tenthredinoidea s. str., also monophyletic), and the monophyly of all families except Tenthredinidae. The analyses fail to consistently retrieve any of the six currently recognised subfamilies within Tenthredinidae, although core clades of Heterarthrinae, Nematinae, Selandriinae and Tenthredininae are often supported. Diprionidae are placed inside the Nematinae under some weighting conditions. The failure to corroborate the tenthredinid subfamilies might be ascribed to an insufficient character/terminal ratio, but also to problems with the existing classification. Inclusion of characters from the male genitalia and the larval stages as well as molecular data currently being assembled will hopefully lead to a more robust classification of the Tenthredinidae in the future.


References

Basibuyuk, H. H., and Quicke, D. L. J. (1995). Morphology of the antenna cleaner in the Hymenoptera with particular reference to the non-aculeate families (Insecta). Zoologica Scripta 24, 157–177.
Morphology of the antenna cleaner in the Hymenoptera with particular reference to the non-aculeate families (Insecta).Crossref | GoogleScholarGoogle Scholar |

Basibuyuk, H. H., and Quicke, D. L. J. (1997). Hamuli in the Hymenoptera (Insecta) and their phylogenetic implications. Journal of Natural History 31, 1563–1585.
Hamuli in the Hymenoptera (Insecta) and their phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |

Benson, R. B. (1952). Hymenoptera: 2. Symphyta. Section (b). Handbooks for the Identification of British Insects VI(2b), 51–138.

Benson, R. B. (1958). Hymenoptera: 2. Symphyta. Section (c). Handbooks for the Identification of British Insects VI(2c), 139–252 + vi pp.

Beutel, R. G., and Vilhelmsen, L. (2007). Head anatomy of Xyelidae (Hexapoda: Hymenoptera) and phylogenetic implications. Organisms, Diversity & Evolution 7, 207–230.
Head anatomy of Xyelidae (Hexapoda: Hymenoptera) and phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |

Blank, S. M., Groll, E. K., Liston, A. D., Prous, M., and Taeger, A. (2012). ‘ECatSym – Electronic World Catalog of Symphyta (Insecta, Hymenoptera).’ Program version 4.0 beta, data version 39 (18.12.2012). Digital Entomological Information, Müncheberg.

Boevé, J.-L., Blank, S. M., Meijer, G., and Nyman, T. (2013). Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evolutionary Biology 13, 1–14.

Gauld, I. D., and Bolton, B. (1996). ‘The Hymenoptera.’ Second impression. (Oxford University Press: Oxford, UK.)

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Goulet, H. (1992). The genera and subgenera of the sawflies of Canada and Alaska: Hymenoptera. Symphyta. The insects and arachnids of Canada. Part 20. Agriculture Canada Publication 1876.

Heraty, J. M., Wooley, J. B., and Darling, D. C. (1994). Phylogenetic implications of the mesofurca and mesopostnotum in the Hymenoptera. Journal of Hymenoptera Research 3, 241–277.

Heraty, J., Ronquist, F., Carpenter, J. M., Hawks, D., Schulmeister, S., Dowling, A. P. G., Murray, D., Munro, J., Wheeler, W. C., Schiff, N., and Sharkey, M. J. (2011). Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution 60, 73–88.
Evolution of the hymenopteran megaradiation.Crossref | GoogleScholarGoogle Scholar | 21540117PubMed |

Isaka, Y., and Sato, T. (2014). Molecular phylogenetic and divergence time estimation analyses of the sawfly subfamily Selandriinae (Hymenoptera: Tenthredinidae). Entomological Science 17, 435–439.
Molecular phylogenetic and divergence time estimation analyses of the sawfly subfamily Selandriinae (Hymenoptera: Tenthredinidae).Crossref | GoogleScholarGoogle Scholar |

Jervis, M., and Vilhelmsen, L. (2000). Mouthpart evolution in adults of the basal, ‘symphytan’, hymenopteran lineages. Biological Journal of the Linnean Society. Linnean Society of London 70, 121–146.

Klopfstein, S., Vilhelmsen, L., Heraty, J. M., Sharkey, M. J., and Ronquist, F. (2013). The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data. PLoS ONE 8, e69344.
The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12mt73L&md5=2360b3ef247f919f8625491f1937d738CAS | 23936325PubMed |

Leppänen, S. A., Altenhofer, E., Liston, A. D., and Nyman, T. (2012). Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterathrinae). Molecular Phylogenetics and Evolution 64, 331–341.
Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterathrinae).Crossref | GoogleScholarGoogle Scholar | 22531610PubMed |

Leppänen, S. A., Altenhofer, E., Liston, A. D., and Nyman, T. (2013). Ecological versus phylogenetic determinants of trophic associations in a plant-leafminer-parasitoid food web. Evolution 67, 1502.

Maddison, W., and Maddison, D. (2011). Mesquite 2.75. Available: http://mesquiteproject.org/mesquite/mesquite.html [accessed September 2011]

Malm, T., and Nyman, T. (2015). Phylogeny of the symphytan grade of Hymenoptera: new pieces into the old jigsaw(fly) puzzle. Cladistics 31, 17.
Phylogeny of the symphytan grade of Hymenoptera: new pieces into the old jigsaw(fly) puzzle.Crossref | GoogleScholarGoogle Scholar |

Maxwell, D. E. (1955). The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta). Canadian Entomologist 87, 1–132.

Nyman, T., Roininen, H., and Vuorinen, J. A. (1998). Evolution of different gall types in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 52, 465–474.
Evolution of different gall types in willow-feeding sawflies (Hymenoptera: Tenthredinidae).Crossref | GoogleScholarGoogle Scholar |

Nyman, T., Widmer, A., and Roininen, H. (2000). Evolution of gall morphology and host-plant associations in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54, 526–533.
Evolution of gall morphology and host-plant associations in willow-feeding sawflies (Hymenoptera: Tenthredinidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvgtlKrtw%3D%3D&md5=0e1467a4f53815c9fcc92585edd2405fCAS | 10937229PubMed |

Nyman, T., Zinovjev, A. G., Vikberg, V., and Farrell, B. D. (2006). Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae). Systematic Entomology 31, 569–583.
Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae).Crossref | GoogleScholarGoogle Scholar |

Nyman, T., Vikberg, V., Smith, D. R., and Boeve, J.-L. (2010). How common is ecological speciation in plant-feeding insects? A “higher” Nematinae perspective. BMC Evolutionary Biology 10, 266.
How common is ecological speciation in plant-feeding insects? A “higher” Nematinae perspective.Crossref | GoogleScholarGoogle Scholar | 20807452PubMed |

Prous, M., Blank, S. M., Goulet, H., Heibo, E., Liston, A., Malm, T., Nyman, T., Schmidt, S., Smith, D. R., Vårdal, H., Viitassaari, M., Vikberg, V., and Taeger, A. (2014). The genera of Nematinae (Hymenoptera, Tenthredinidae). Journal of Hymenoptera Research 40, 1–69.
The genera of Nematinae (Hymenoptera, Tenthredinidae).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P. (2012). A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61, 973–999.
A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 22723471PubMed |

Schmidt, S., and Walter, G. H. (2014). Young clades in an old family: major evolutionary transitions and diversification of the eucalypt-feeding pergid sawflies in Australia (Insecta, Hymenoptera, Pergidae). Molecular Phylogenetics and Evolution 74, 111–121.
Young clades in an old family: major evolutionary transitions and diversification of the eucalypt-feeding pergid sawflies in Australia (Insecta, Hymenoptera, Pergidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cvltlGnug%3D%3D&md5=c772669b72b0bb9cadb3b905943e20b0CAS | 24530868PubMed |

Schulmeister, S. (2001). Functional morphology of the male genitalia and copulation in lower Hymenoptera, with special emphasis on the Tenthredinoidea s. str. (Insecta, Hymenoptera, ‘Symphyta’). Acta Zoologica 82, 331–349.
Functional morphology of the male genitalia and copulation in lower Hymenoptera, with special emphasis on the Tenthredinoidea s. str. (Insecta, Hymenoptera, ‘Symphyta’).Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S. (2003a). Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biological Journal of the Linnean Society. Linnean Society of London 79, 245–275.
Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S. (2003b). Genitalia and terminal abdominal segments of male basal Hymenoptera (Insecta): morphology and evolution. Organisms, Diversity & Evolution 3, 253–279.
Genitalia and terminal abdominal segments of male basal Hymenoptera (Insecta): morphology and evolution.Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S. (2003c). Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters. Biological Journal of the Linnean Society. Linnean Society of London 79, 209–243.
Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters.Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S., Wheeler, W. C., and Carpenter, J. M. (2002). Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484.
Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Sharkey, M. J., Carpenter, J. M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A. P. G., Schulmeister, S., Murray, D., Deans, A. R., Ronquist, F., Krogmann, L., and Wheeler, W. C. (2012). Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 28, 80–112.
Phylogenetic relationships among superfamilies of Hymenoptera.Crossref | GoogleScholarGoogle Scholar |

Taeger, A., Blank, S. M., and Liston, A. D. (2010). World catalog of Symphyta (Hymenoptera). Zootaxa 2580, 1–1064.

Vilhelmsen, L. (1996). The preoral cavity of lower Hymenoptera (Insecta): comparative morphology and phylogenetic significance. Zoologica Scripta 25, 143–170.
The preoral cavity of lower Hymenoptera (Insecta): comparative morphology and phylogenetic significance.Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (1997). The phylogeny of lower Hymenoptera (Insecta), with a summary of the early evolutionary history of the order. Journal of Zoological Systematics and Evolutionary Research 35, 49–70.
The phylogeny of lower Hymenoptera (Insecta), with a summary of the early evolutionary history of the order.Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (1999). The occipital region in the basal Hymenoptera (Insecta): a reappraisal. Zoologica Scripta 28, 75–85.
The occipital region in the basal Hymenoptera (Insecta): a reappraisal.Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (2000a). Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeletomusculature of the thoraco–abdominal boundary region in basal Hymenoptera (Insecta). Zoomorphology 119, 185–221.
Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeletomusculature of the thoraco–abdominal boundary region in basal Hymenoptera (Insecta).Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (2000b). Cervical and prothoracic skeletomusculature in the basal Hymenoptera (Insecta): comparative anatomy and phylogenetic implications. Zoologischer Anzeiger 239, 105–138.

Vilhelmsen, L. (2000c). The ovipositor apparatus of basal Hymenoptera (Insecta): phylogenetic implications and functional morphology. Zoologica Scripta 29, 319–345.
The ovipositor apparatus of basal Hymenoptera (Insecta): phylogenetic implications and functional morphology.Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (2001). Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta). Zoological Journal of the Linnean Society 131, 393–442.
Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta).Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L. (2011). Head capsule characters in the Hymenoptera and their phylogenetic implications. ZooKeys 130, 343–361.
Head capsule characters in the Hymenoptera and their phylogenetic implications.Crossref | GoogleScholarGoogle Scholar | 22259288PubMed |

Vilhelmsen, L., and Turrisi, G. F. (2011). Per arborem ad astra: morphological adaptations to exploiting the woody habitat in the early evolution of Hymenoptera. Arthropod Structure & Development 40, 2–20.
Per arborem ad astra: morphological adaptations to exploiting the woody habitat in the early evolution of Hymenoptera.Crossref | GoogleScholarGoogle Scholar |

Vilhelmsen, L., Miko, I., and Krogmann, L. (2010). Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). Zoological Journal of the Linnean Society 159, 22–194.
Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera).Crossref | GoogleScholarGoogle Scholar |

Weltz, C.-E., and Vilhelmsen, L. (2014). The saws of sawflies: exploring the morphology of the ovipositor in Tenthredinoidea (Insecta: Hymenoptera), with emphasis on Nematinae. Journal of Natural History 48, 133–183.
The saws of sawflies: exploring the morphology of the ovipositor in Tenthredinoidea (Insecta: Hymenoptera), with emphasis on Nematinae.Crossref | GoogleScholarGoogle Scholar |

Yuasa, H. (1922). A classification of the larvae of the Tenthredinoidea. Illinois Biological Monographs 7, 1–172.

Zhelokhovtsev, A. N., Tobias, V. I., and Kozlov, M. A. (1994). Volume III: Hymenoptera. Part 6: Symphyta. In ‘Keys to the Insects of the European Part of the USSR’. (Ed. G. S. Medvedev.) i–xviii + 432 pp. (Brill: Leiden, The Netherlands.)