Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae)
Daniele Polotow A B D , Anthea Carmichael A and Charles E. Griswold A CA Arachnology Laboratory, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA.
B Present address: Laboratório Especial de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500, Butantã, São Paulo, SP, 05503-900.
C Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA.
D Corresponding author. Email: danielepolotow@gmail.com
Invertebrate Systematics 29(2) 124-163 https://doi.org/10.1071/IS14041
Submitted: 25 July 2014 Accepted: 23 October 2014 Published: 11 June 2015
Journal Compilation © CSIRO Publishing 2015 Open Access CC BY-NC-ND
Abstract
Phylogenetic relationships within the superfamily Lycosoidea are investigated through the coding and analysis of character data derived from morphology, behaviour and DNA sequences. In total, 61 terminal taxa were studied, representing most of the major groups of the RTA-clade (i.e. spiders that have a retrolateral tibial apophysis on the male palp). Parsimony and model-based approaches were used, and several support values, partitions and implied weighting schemes were explored to assess clade stability. The morphological–behavioural matrix comprised 96 characters, and four gene fragments were used: 28S (~737 base pairs), actin (~371 base pairs), COI (~630 base pairs) and H3 (~354 base pairs). Major conclusions of the phylogenetic analysis include: the concept of Lycosoidea is restricted to seven families: Lycosidae, Pisauridae, Ctenidae, Psechridae, Thomisidae, Oxyopidae (but Ctenidae and Pisauridae are not monophyletic) and also Trechaleidae (not included in the analysis); the monophyly of the ‘Oval Calamistrum clade’ (OC-clade) appears to be unequivocal, with high support, and encompassing the Lycosoidea plus the relimited Zoropsidae and the proposed new family Udubidae (fam. nov.); Zoropsidae is considered as senior synonym of Tengellidae and Zorocratidae (syn. nov.); Viridasiinae (rank nov.) is raised from subfamily to family rank, excluded from the Ctenidae and placed in Dionycha. Our quantitative phylogenetic analysis confirms the synonymy of Halidae with Pisauridae. The grate-shaped tapetum appears independently at least three times and has a complex evolutionary history, with several reversions.
Additional keywords: 28S rRNA, actin, cladistic analysis, COI, Ctenidae, Dionycha, H3, Halidae, Lycosidae, Oxyopidae, Pisauridae, Senoculidae, systematic, taxonomy, Tengellidae, Thomisidae, Udubidae, Zorocratidae, Zoropsidae.
References
Agnarsson, I., Gregorič, M., Blackledge, T. A., and Kuntner, M. (2013a). The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orblike spider webs. Journal of Zoological Systematics and Evolutionary Research 51, 100–106.| The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orblike spider webs.Crossref | GoogleScholarGoogle Scholar |
Agnarsson, I., Coddington, J., and Kuntner, M. (2013b). Systematics – progress in the study of spider diversity and evolution. In ‘Spider Research in the 21st Century: Trends and Perspectives’. (Ed. D. Penney.) pp. 58–111. (Siri Scientific Press: Rochdale, UK.)
Altschul, A. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.
| 1:CAS:528:DyaK2sXlvFyhu7w%3D&md5=f96006b92451a7cea9470cbc39c47b39CAS |
Álvarez-Padilla, F., and Hormiga, G. (2007). A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. The Journal of Arachnology 35, 538–542.
| A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar |
Arnedo, M., Oromi, P., and Ribera, C. (2001). Radiation of the spider genus Dysdera (Araneae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets. Cladistics 17, 313–353.
| Radiation of the spider genus Dysdera (Araneae, Dysderidae) in the Canary Islands: cladistic assessment based on multiple data sets.Crossref | GoogleScholarGoogle Scholar |
Baccetti, B., and Bedini, C. (1964). Research on the structure and physiology of the eyes of a lycosid spider. I. Microscopic and ultramicroscopic structure. Archives Italiennes de Biologie 102, 97–122.
Barth, F. G. (2002). ‘A Spider‘s World. Senses and Behavior.’ (Springer-Verlag: Heidelberg.)
Bayer, S., and Schönhofer, A. L. (2013). Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida: Araneae). Invertebrate Systematics 27, 53–80.
| Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida: Araneae).Crossref | GoogleScholarGoogle Scholar |
Bennett, R. G. (1992). The spermathecal pores of spiders with special reference to dictynoids and amaurobioids (Araneae, Araneomorphae, Araneoclada). Proceedings of the Entomological Society of Ontario 123, 1–21.
Berger, M. P., and Munson, P. J. (1991). A novel randomized iterative strategy for aligning multiple protein sequences. Computer Applications in the Biosciences 7, 479–484.
| 1:CAS:528:DyaK38Xht1Chu7s%3D&md5=f940e2987590a71181f0bca6f073f776CAS | 1747779PubMed |
Bertkau, P. (1882). Über das Cribellum und Calamistrum. Ein Beitrag zur Histologie, Biologie und Systematik der Spinnen. Archiv für Naturgeschichte 48, 316–362.
Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106, 5229–5234.
| Reconstructing web evolution and spider diversification in the molecular era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVertL8%3D&md5=dd0de03b49447364b5bfefb0cadffbd0CAS | 19289848PubMed |
Bremer, K. (1994). Branch support and tree stability. Cladistics 10, 295–304.
Bosselaers, J. (2002). A cladistic analysis of Zoropsidae (Araneae), with the description of a new genus. Belgian Journal of Zoology 132, 141–154.
Clerck, C. (1757). ‘Svenska spindlar, uti sina hufvud-slågter indelte samt under några och sextio särskildte arter beskrefne och med illuminerade figurer uplyste.’ (Stockholmiae.)
Coddington, J. A., and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22, 565–592.
| Systematics and evolution of spiders (Araneae).Crossref | GoogleScholarGoogle Scholar |
Coddington, J., and Scharff, N. (1994). Problems with zero-length branches. Cladistics 10, 415–423.
| Problems with zero-length branches.Crossref | GoogleScholarGoogle Scholar |
Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
| Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |
Dahl, F. (1901). Nachtrag zur Uebersicht der Zoropsiden. Sitzungs-Berichte der Gesellschaft Naturforschender Freunde, Berlin 1901, 244–255.
Dahl, F. (1908). Die Lycosiden oder Wolfsspinnen Deutschlands und ihre Stellung im Haushalt der Natur. Nach statistichen Untersuchungen dargestellt. Nova Acta Academiae Caesareae Leopoldino-Carolinae Germanicae Naturae Curiosorum 88, 175–678.
Dahl, F. (1913). ‘Vergleichende Physiologie und Morphologie der Spinnentiere unter besonderer Berucksichtigung der Lebensweise. 1. Die Beziehungen des Körperbaues und der Farben zur Umgebung.’ (Jena.) pp. 1–113.
Dufour, L. (1820). Descriptions de cinq arachnides nouvelles. Annales générales des Sciences physiques 5, 198–209.
Farris, J. S. (1969). A successive approximations approach to character weighting. Systematic Zoology 18, 374–385.
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 1–15.
Fenk, L. M., and Schmid, A. (2010). The orientation-dependent visual special cut-off frequency in a spider. The Journal of Experimental Biology 213, 3111–3117.
| The orientation-dependent visual special cut-off frequency in a spider.Crossref | GoogleScholarGoogle Scholar | 20802111PubMed |
Fitch, W. M. (1971). Toward defining the course of evolution: minimal change for a specific tree topology. Systematic Zoology 20, 406–416.
| Toward defining the course of evolution: minimal change for a specific tree topology.Crossref | GoogleScholarGoogle Scholar |
Foelix, R. F. (2011). ‘Biology of Spiders.’ 3rd edn. (Oxford University Press: New York.)
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=c84f72a2d796a7fee91c4e2e01175599CAS | 7881515PubMed |
Forster, R. R. (1970). The spiders of New Zealand. Part III. Otago Museum Bulletin 3, 1–184.
Forster, R. R., and Wilton, C. L. (1973). The spiders of New Zealand. Part IV. Otago Museum Bulletin 4, 1–309.
Giribet, G., and Wheeler, W. C. (1999). On gaps. Molecular Phylogenetics and Evolution 13, 132–143.
| 1:CAS:528:DyaK1MXmt1Omsbs%3D&md5=14682f4f5ca7266a03e6ccfa32dd314bCAS | 10508546PubMed |
Giribet, G., and Edgecomb, G. (2006). Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology. Proceedings. Biological Sciences 273, 531–538.
| Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFeqtLo%3D&md5=52040c0713d3079a05dc0300c97a872dCAS |
Giribet, G., Vogt, L., Pérez González, A., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestmen (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
Goloboff, P. A. (1993). Estimating character weights during tree search. Cladistics 9, 83–91.
Goloboff, P. A., Farris, J. S., Källersjö, M., Oxelman, B., Ramírez, M. J., and Szumik, C. A. (2003). Improvements to resampling measures of group support. Cladistics 19, 324–332.
| Improvements to resampling measures of group support.Crossref | GoogleScholarGoogle Scholar |
Goloboff, P. A., Farris, J. S., and Nixon, K. (2008a). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
Goloboff, P. A., Carpenter, J. M., Arias, J. S., and Miranda Esquivel, D. R. (2008b). Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24, 758–773.
| Weighting against homoplasy improves phylogenetic analysis of morphological data sets.Crossref | GoogleScholarGoogle Scholar |
Golubchik, T., Wise, M. J., Easteal, S., and Jermiin, L. S. (2007). Mind the gaps: evidence of bias in estimates of multiple sequence alignments. Molecular Biology and Evolution 24, 2433–2442.
| Mind the gaps: evidence of bias in estimates of multiple sequence alignments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGmsbfM&md5=2b59eb723a037216c617eabfd1053748CAS | 17709332PubMed |
Gotoh, O. (1993). Optimal alignment between groups of sequences and its application to multiple sequence alignment. Computer Applications in the Biosciences 9, 361–370.
| 1:CAS:528:DyaK2cXnvVer&md5=0be355dedc00e165e9a7663ae748b0eaCAS | 8324637PubMed |
Griswold, C. E. (1983). Tapinillus longipes Taczanowski, a web-building lynx spider from the American tropics (Araneae: Oxyopidae). Journal of Natural History 17, 979–985.
| Tapinillus longipes Taczanowski, a web-building lynx spider from the American tropics (Araneae: Oxyopidae).Crossref | GoogleScholarGoogle Scholar |
Griswold, C. E. (1993). Investigations into the phylogeny of the lycosoid spiders and their kin (Arachnida: Araneae: Lycosoidea). Smithsonian Contributions to Zoology 539, 1–39.
| Investigations into the phylogeny of the lycosoid spiders and their kin (Arachnida: Araneae: Lycosoidea).Crossref | GoogleScholarGoogle Scholar |
Griswold, C. E., Coddington, J. A., Platnick, N. I., and Forster, R. R. (1999). Towards a phylogeny of Entelegyne spiders (Araneae, Araneomorphae, Entelegynae). The Journal of Arachnology 27, 53–63.
Griswold, C. E., Ramírez, M. J., Coddington, J. A., and Platnick, N. I. (2005). Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny. Proceedings of the California Academy of Sciences 56, 1–324.
Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
| A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=269ae178510d5ccbf65ffed910e1b58fCAS | 11277632PubMed |
Homann, H. (1928). Beiträge zur Physiologie der Spinnenaugen. I. Untesuchungsmethoden. II. Das Sehvermögen der Salticiden. Zeitschrift fur Vergleichende Physiologie 7, 201–268.
| Beiträge zur Physiologie der Spinnenaugen. I. Untesuchungsmethoden. II. Das Sehvermögen der Salticiden.Crossref | GoogleScholarGoogle Scholar |
Homann, H. (1971). Die Augen der Araneae: Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Zeitschrift für Morphologie der Tiere 69, 201–272.
| Die Augen der Araneae: Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida).Crossref | GoogleScholarGoogle Scholar |
Hormiga, G., Arnedo, M., and Gillespie, R. (2003). Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae). Systematic Biology 52, 70–88.
| Speciation on a conveyor belt: sequential colonization of the Hawaiian Islands by Orsonwelles spiders (Araneae, Linyphiidae).Crossref | GoogleScholarGoogle Scholar | 12554442PubMed |
Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
| MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=cd4de43d633ceeff10f03392cbc4da97CAS | 11524383PubMed |
Jocqué, R. (1994). Halidae, a new spider family from Madagascar (Araneae). Bulletin of the British Arachnological Society 9, 281–289.
Jocqué, R., and Dippenaar-Schoeman, A. S. (2006). ‘Spider Families of the World.’ (Musée Royal de l‘Afrique Central: Tervuren.)
Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
| 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=062ddb93ea5f1aa3de915bbe559e94aaCAS | 12136088PubMed |
Katoh, K.,, Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
| 1:CAS:528:DC%2BD2MXhtV2qsbc%3D&md5=cc62409e78bbc10a2c4ef2a613b5707dCAS |
Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
| 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=236425aba2026540cc17978d4fca1cdaCAS | 18372315PubMed |
Land, M. F. (1972). The physics and biology of animal reflectors. Progress in Biophysics and Molecular Biology 24, 75–106.
| The physics and biology of animal reflectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVajtr0%3D&md5=b1b273731f73283d461936190fcba2afCAS | 4581858PubMed |
Land, M. F. (1985). The morphology and optics of spider eyes. In ‘Neurobiology of Arachnids’. (Ed. F. G. Barth.) pp. 53–76. (Spring-Verlag: Berlin, Heidelberg.)
Latiolais, J. M., Taylor, M. S., Kaustuv, R., and Hellberg, M. E. (2006). A molecular phylogenetic analysis of strombid gastropod morphological diversity. Molecular Phylogenetics and Evolution 41, 436–444.
| 1:CAS:528:DC%2BD28XhtVagtbzL&md5=8be3fc700825a2f8e817a9af03b81bccCAS | 16839783PubMed |
Lehtinen, P. T. (1967). ‘Classification of the Cribellate Spiders and some Allied Families: with Notes on the Evolution of the Suborder Araneomorpha.’ (Societas Zoologica Botanica Fennica Vanamo: Helsinki.)
Lenz, H. (1886). Beiträge zur Kenntniss der Spinnenfauna Madagascars. Zoologische Jahrbucher. Abteilung fur Systematik, Ökologie und Geographie der Tiere 1, 379–408.
Lenz, H. (1891). Spinnen von Madagascar und Nossi-Bé. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten 9, 153–181.
Maddison, W. P., and Maddison, D. R. (2011). ‘Mesquite: a Modular System for Evolutionary Analysis.’ Version 2.75. Available at http://mesquiteproject.org
Miller, J. A., Carmichael, A., Ramírez, M. J., Spagna, J. C., Haddad, C. R., Rezac, M., Johannesen, J., Kral, J., Wang, X., and Griswold, C. E. (2010). Phylogeny of entelegyne spiders: affinities of the family Penestomidae (new rank), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution 55, 786–804.
| Phylogeny of entelegyne spiders: affinities of the family Penestomidae (new rank), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae).Crossref | GoogleScholarGoogle Scholar | 20206276PubMed |
Mora, G. (1986). Use of web by Tapinillus longipes (Araneae: Oxyopidae). In ‘Proceedings of the Ninth International Congress of Arachnology, Panama 1983’. (Eds W. G. Eberhard, Y. D. Lubin and B. C. Robinson.) pp. 173–175. (Smithsonian Institution Press: Washington, DC.)
Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453.
| 1:CAS:528:DyaE3cXktVShu74%3D&md5=396d52dabee57a39fc51795591f10fccCAS | 5420325PubMed |
Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217.
| 1:CAS:528:DC%2BD3cXmtVGntr8%3D&md5=eae33ad4c7c01053fb8ba50d65fb37d2CAS | 10964570PubMed |
Nylander, J. A. A. (2008). MrModeltest Version 2.3. Evolutionary Biology Centre, Uppsala University. Available from: http://www.abc.se/~nylander/.
Ono, H. (1993). Spiders (Araneae) from Madagascar. Acta Arachnologica Tokyo 42, 55–67.
Piacentini, L. N., Ramírez, M. J., and Silva, D. (2013). Systematics of Cauquenia (Araneae: Zoropsidae), with comments on the patterns of evolution of cribellum and male tibial crack on Lycosoidea. Invertebrate Systematics 27, 567–577.
| Systematics of Cauquenia (Araneae: Zoropsidae), with comments on the patterns of evolution of cribellum and male tibial crack on Lycosoidea.Crossref | GoogleScholarGoogle Scholar |
Platnick, N. I. (1977). The hypochiloid spiders: a cladistic analysis, with notes on the Atypoidea (Arachnida, Araneae). American Museum Novitates 2627, 1–23.
Platnick, N. I., and Gertsch, W. J. (1976). The suborders of spiders: a cladistic analysis. American Museum Novitates 2607, 1–15.
Platnick, N. I., and Ubick, D. (2008). A revision of the endemic Californian spider genus Titiotus Simon (Araneae, Tengellidae). American Museum Novitates 3608, 1–33.
| A revision of the endemic Californian spider genus Titiotus Simon (Araneae, Tengellidae).Crossref | GoogleScholarGoogle Scholar |
Platt, A. R., Woodhall, R. W., and George, A. L. J. (2007). Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. BioTechniques 43, 58–62.
| 1:CAS:528:DC%2BD2sXotVyku7s%3D&md5=d8045465a5d053ef8553adf4dfdf139fCAS | 17695253PubMed |
Polotow, D., and Brescovit, A. D. (2010). Phylogenetic relationships of the Neotropical spider genus Itatiaya (Araneae). Zoologica Scripta 40, 187–193.
Polotow, D., and Brescovit, A. D. (2014). Phylogenetic analysis of the tropical wolf spider subfamily Cteninae (Arachnida, Araneae, Ctenidae). Zoological Journal of the Linnean Society 170, 333–361.
Prendini, L., Crowe, T., and Wheeler, W. (2003). Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods. Invertebrate Systematics 17, 185–259.
| Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslals7o%3D&md5=15986575bc4531117392470a7b3a894aCAS |
Rambaut, A., and Drummond, A. J. (2007). Tracer: MCMC Trace Analysis Tool. Version 1.4. Available at http://beast.bio.ed.ac.uk/Tracer
Ramírez, M. J. (2003). The spider subfamily Amaurobioidinae (Araneae, Anyphaenidae): a phylogenetic revision at the generic level. Bulletin of the American Museum of Natural History 277, 1–262.
| The spider subfamily Amaurobioidinae (Araneae, Anyphaenidae): a phylogenetic revision at the generic level.Crossref | GoogleScholarGoogle Scholar |
Ramírez, M. J. (2014). The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History 390, 1–374.
| The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae).Crossref | GoogleScholarGoogle Scholar |
Raven, R. J., and Stumkat, K. S. (2005). Revisions of Australian ground-hunting spiders: II. Zoropsidae (Lycosoidea: Araneae). Memoirs of the Queensland Museum 50, 347–423.
Robinson, M. H., and Lubin, Y. D. (1979). Specialists and generalists: the ecology and behavior of some web-building spiders from Papua New Guinea. II. Psechrus argentatus and Fecenia sp. (Araneae: Psechridae). Pacific Insects 21, 133–164.
Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=6c22440a111ffd7c39b671a54462b45bCAS | 12912839PubMed |
Rovner, J. S. (1980). Adaptations for prey capture in oxyopid spiders: phylogenetic implications. In ‘8th International Congress of Arachnology, Vienna’. (Ed. J. Gruber.) pp. 233–237.
Sierwald, P. (1989). Morphology and ontogeny of female copulatory organs in American Pisauridae, with special reference to homologous features (Arachnida: Araneae). Smithsonian Contributions to Zoology 484, 1–24.
| Morphology and ontogeny of female copulatory organs in American Pisauridae, with special reference to homologous features (Arachnida: Araneae).Crossref | GoogleScholarGoogle Scholar |
Sierwald, P. (1990). Morphology and homologous features in the male palp organ in Pisauridae and other spider families, with notes on the taxonomy of Pisauridae (Arachnidae: Araneae). Nemouria 35, 1–59.
Silva Dávila, D. (2003). Higher-level relationships of the spider family Ctenidae (Araneae: Ctenoidea). Bulletin of the American Museum of Natural History 274, 1–86.
| Higher-level relationships of the spider family Ctenidae (Araneae: Ctenoidea).Crossref | GoogleScholarGoogle Scholar |
Simon, E. (1880). Révision de la famille des Sparassidae (Arachnides). Actes de la Société linnéenne de Bordeaux 34, 223–351.
Simon, E. (1891). Descriptions de quelques arachnides du Costa Rica communiqués pa M. A. Getaz (de Genève). Bulletin de la Société Zoologique de France 16, 109–112.
Simon, E. (1906). Etude sur les araignées de la section des cribellates. Annales de la Société Entomologique de Belgique 50, 284–308.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=2841a8ddd2ecccad310722bcd729b341CAS |
Spagna, J. C., and Gillespie, R. G. (2008). More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders. Molecular Phylogenetics and Evolution 46, 347–368.
| More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders.Crossref | GoogleScholarGoogle Scholar | 17928240PubMed |
Strand, E. (1907). Diagnosen neuer Spinnen aus Madagaskar und Sansibar. Zoologischer Anzeiger Leipzig 31, 725–748.
Swofford, D. L., and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences 87, 199–229.
| Reconstructing ancestral character states under Wagner parsimony.Crossref | GoogleScholarGoogle Scholar |
Swofford, D. L., and Maddison, W. P. (1992). Parsimony, character-state reconstructions, and evolutionary inferences. In ‘Systematics, Historical Ecology, and North American Freshwater Fishes’. (Ed. R. L. Mayden.) pp. 187–223. (Stanford University Press: Stanford.)
Vinson, A. (1863). Aranéides des îles de la Réunion. Maurice et Madagascar. Paris i-cxx, 1–337.
Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=d44f1c97028888e070e932607539b111CAS | 11975347PubMed |
Wolff, J. O., and Gorb, S. N. (2012). Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Structure & Development 41, 419–433.
Wolff, J. O., Nentwig, W., and Gorb, S. N. (2013). The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8, e62682.
| The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFWqs7k%3D&md5=94a1283fd68379f89ba272fcdc45ee44CAS | 23650526PubMed |
World Spider Catalog (2015). World Spider Catalog. Natural History Museum Bern. Online at http://wsc.nmbe.ch, [version 16, accessed January 2015]