Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
REVIEW

Protosternini (Coleoptera : Hydrophilidae) corroborated as monophyletic and its larva described for the first time: a review of the myrmecophilous genus Sphaerocetum

Martin Fikáček A B G , Munetoshi Maruyama C , Takashi Komatsu D , Christoph von Beeren E , Dominik Vondráček B and Andrew E. Z. Short F
+ Author Affiliations
- Author Affiliations

A Department of Entomology, National Museum, Cirkusová 1740, CZ-19300 Praha 9, Czech Republic.

B Department of Zoology, Faculty of Sciences, Charles University in Prague, Viničná 7, CZ-128 43 Praha 2, Czech Republic.

C The Kyushu University Museum, Fukuoka 812-8581, Japan.

D Institute of Tropical Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

E Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, New York City, NY 10065, USA.

F Division of Entomology, Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.

G Corresponding author. Email: mfikacek@gmail.com

Invertebrate Systematics 29(1) 23-36 https://doi.org/10.1071/IS14026
Submitted: 27 May 2014  Accepted: 29 October 2014   Published: 20 March 2015

Abstract

The genus Sphaerocetum Fikáček, 2010 is reviewed on the basis of specimens collected from mixed ant nests shared by Camponotus Mayr, 1861 and Crematogaster Lund, 1831 ants in Peninsular Malaysia. Two new species, S. arboreum, sp. nov. and S. hortulanum, sp. nov., are described. A larva of S. arboreum was collected in the same nest as the adults, implying that it is likely that the entire life cycle takes place inside the ant nest; its association with adults was confirmed by cox1 sequences. It is described in detail and represents the first known larva of the tribe Protosternini. Fragments of four genes (cox1, cox2, 18S and 28S) were amplified for S. arboreum and combined with previously generated data in order to test the position of the genus within the subfamily Sphaeridiinae. The analyses revealed Sphaerocetum as a sister taxon to Protosternum Sharp, 1890, corroborating the monophyly of the tribe Protosternini. Bayesian analysis revealed an alternative hypothesis of the phylogenetic position of the tribe, indicating that Protosternini is a sister-group to Omicrini. This position is supported by the chaetotaxy of the maxillary stipes of the larva, which lacks the increased number of stout setae on the inner face present in all other Sphaeridiinae larvae except Omicrini.


References

Archangelsky, M. (1997). Studies on the biology, ecology, & systematics of the immature stages of New World Hydrophiloidea. Bulletin of the Ohio Biological Survey. New Series 12, 1–207.

Bameul, F. (1997a). A revision of Protosternum Sharp (Coleoptera, Hydrophilidae). Nouvelle Revue d’Entomologie 14, 17–41.

Bameul, F. (1997b). A revision of Mucetum d’Orchymont and Rhombosternum Balfour-Browne (Coleoptera: Hydrophilidae) with a phylogenetic analysis of Protosternini. Annales de la Société entomologique de France (N. S.) 33, 375–403.

Bloom, D. D., Fikáček, M., and Short, A. E. Z. (2014). Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages. PLoS ONE 9, e98430.
Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages.Crossref | GoogleScholarGoogle Scholar | 24887453PubMed |

Byttebier, B., and Torres, P. L. M. (2009). Description of the preimaginal stages of Enochrus (Hugoscottia) variegatus (Steinheil, 1869) and E. (Methydrus) vulgaris (Steinheil, 1869) (Coleoptera: Hydrophilidae), with emphasis on larval morphometry and chaetotaxy. Zootaxa 2139, 1–22.

Clarkson, B., Albertoni, A. A., and Fikáček, M. (2014). Taxonomy and biology of the bromeliad-inhabiting genus Lachnodacnum (Coleoptera: Hydrophilidae: Sphaeridiinae). Acta Entomologica Musei Nationalis Pragae 54, 157–194.

Costa, C., Vanin, S. A., and Casari-Chen, S. A. (1988). ‘Larvas de Coleoptera do Brasil.’ (Museu de Zoologia, Universidad de São Paulo: São Paulo.)

Deler-Hernández, A., Cala-Riquelme, F., and Fikáček, M. (2013). Description of a new species of Phaenonotum from eastern Cuba (Coleoptera: Hydrophilidae: Sphaeridiinae). Acta Entomologica Musei Nationalis Pragae 53, 615–622.

Fikáček, M. (2010). Sphaerocetum gen. n., a new genus of the Protosternini from Peninsular Malaysia (Coleoptera: Hydrophilidae: Sphaeridiinae). Zootaxa 2601, 28–36.

Fikáček, M., and Short, A. E. Z. (2010). A revision of the Neotropical genus Sacosternum Hansen (Hydrophilidae: Sphaeridiinae: Megasternini). Zootaxa 2538, 1–37.

Fikáček, M., Archangelsky, M., and Torres, P. M. (2008). Primary chaetotaxy of the larval head capsule and head appendages of the Hydrophilidae (Insecta: Coleoptera) based on larvae of the genus Hydrobius Leach. Zootaxa 1874, 16–34.

Fikáček, M., Ryndevich, S. K., and Jia, F. L. (2012). An aberrant species of Nipponocercyon from Sichuan, China (Coleoptera: Hydrophilidae: Sphaeridiinae). ZooKeys 214, 13–27.
An aberrant species of Nipponocercyon from Sichuan, China (Coleoptera: Hydrophilidae: Sphaeridiinae).Crossref | GoogleScholarGoogle Scholar | 22936864PubMed |

Fikáček, M., Maruyama, M., Vondráček, D., and Short, A. E. Z. (2013). Chimaerocyon gen. nov., a morphologically aberrant myrmecophilous genus of water scavenger beetle (Coleoptera: Hydrophilidae: Sphaeridiinae). Zootaxa 3716, 277–288.
Chimaerocyon gen. nov., a morphologically aberrant myrmecophilous genus of water scavenger beetle (Coleoptera: Hydrophilidae: Sphaeridiinae).Crossref | GoogleScholarGoogle Scholar |

Gotwald, W. H., Jr. (1995). ‘Army Ants: the Biology of Social Predation.’ (Cornell University Press: Ithaca, NY.)

Hansen, M. (1991). The hydrophiloid beetles. Phylogeny, classification and a revision of the genera (Coleoptera, Hydrophiloidea). Biologiske Skrifter 40, 1–368.

Hansen, M. (1999). ‘World Catalogue of Insects. Volume 2. Hydrophiloidea (s. str.) (Coleoptera).’ (Apollo Books: Stenstrup.)

Hansen, M., and Richardson, B. A. (1998). A new species of Omicrus Sharp (Coleoptera: Hydrophilidae) from Puerto Rico and its larva, the first known larva of Omicrini. Systematic Entomology 23, 1–8.
A new species of Omicrus Sharp (Coleoptera: Hydrophilidae) from Puerto Rico and its larva, the first known larva of Omicrini.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=cd4de43d633ceeff10f03392cbc4da97CAS | 11524383PubMed |

Komarek, A. (2004). Taxonomic revision of Anacaena Thomson, 1859. I. Afrotropical species (Coleoptera: Hydrophilidae). Koleopterologische Rundschau 74, 303–349.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=69a56250f99303ede6ba715e4dc41f26CAS | 22319168PubMed |

Maruyama, M. (2010). A new genus and species of myrmecophilous saphodiine beetle (Coleoptera, Scarabaeidae) inhabiting the myrmecophytic epiphyte Platycerium sp. (Polypodiaceae) in the Bornean rainforest canopy. Zookeys 34, 49–54.
A new genus and species of myrmecophilous saphodiine beetle (Coleoptera, Scarabaeidae) inhabiting the myrmecophytic epiphyte Platycerium sp. (Polypodiaceae) in the Bornean rainforest canopy.Crossref | GoogleScholarGoogle Scholar |

Minoshima, Y., and Hayashi, M. (2011). Larval morphology of the Japanese species of the tribes Acidocerini, Hydrobiusini and Hydrophilini (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae 51, 1–118.

Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 11 September 2013).

Rettenmeyer, C. W., Rettenmeyer, M. E., Joseph, J., and Berghoff, S. M. (2011). The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insectes Sociaux 58, 281–292.
The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates.Crossref | GoogleScholarGoogle Scholar |

Shatrovskiy, A. G. (1990). Kaukasische Hydrophiliden der Gattung Megasternum Mulsant 1844 (Insecta: Coleoptera: Hydrophilidae). Senckenbergiana Biologica 70, 83–87.

Short, A. E. Z., and Fikáček, M. (2011). World catalogue of the Hydrophiloidea (Coleoptera): additions and corrections II (2006–2010). Acta Entomologica Musei Nationalis Pragae 51, 83–122.

Short, A. E. Z., and Fikáček, M. (2013). Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology 38, 723–752.
Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera).Crossref | GoogleScholarGoogle Scholar |

Sowig, P., Himmelsbach, R., and Himmelsbach, W. (1997). Predator–prey relationship between insect larvae: growth of Sphaeridium larvae (Coleoptera: Hydrophilidae) under time constraints through predation on Musca autumnalis maggots (Diptera: Muscidae). Canadian Journal of Zoology 75, 2069–2076.
Predator–prey relationship between insect larvae: growth of Sphaeridium larvae (Coleoptera: Hydrophilidae) under time constraints through predation on Musca autumnalis maggots (Diptera: Muscidae).Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web-servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

von Beeren, C., Schulz, S., Hashim, R., and Witte, V. (2011). Acquisition of chemical recognition cues facilitates integration into ant societies. BMC Ecology 11, 30.
Acquisition of chemical recognition cues facilitates integration into ant societies.Crossref | GoogleScholarGoogle Scholar |