Genetic data confirm the species status of Sepsis nigripes Meigen (Diptera : Sepsidae) and adds one species to the Alpine fauna while questioning the synonymy of Sepsis helvetica Munari
Patrick T. Rohner A E , Yuchen Ang B , Zhao Lei B , Nalini Puniamoorthy C , Wolf U. Blanckenhorn A and Rudolf Meier B DA Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
B Department of Biological Sciences, National University of Singapore, 14 Science Dr 4, Singapore 117543, Singapore.
C Department of Biology, Life Sciences Complex, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
D University Scholars Programme, National University of Singapore, Singapore 138593, Singapore.
E Corresponding author. Email: patrick.rohner@uzh.ch
Invertebrate Systematics 28(5) 555-563 https://doi.org/10.1071/IS14023
Submitted: 29 April 2014 Accepted: 28 August 2014 Published: 13 November 2014
Abstract
Due to their interesting biology, conspicuous sexual dimorphism and the ability to conduct experiments on species that breed under laboratory condition, sepsid flies (Diptera : Sepsidae) are becoming increasingly important model organisms in evolutionary biology. Accurate species boundaries and well supported phylogenetic hypotheses are thus of interest to many biologists. Here we resolve the conflict surrounding the taxonomic status of the European Sepsis nigripes Meigen, 1826, which is shown to be a valid species using morphological and molecular data applied to multiple species concepts. The species is also placed onto a phylogenetic tree for the genus Sepsis that includes most European and North American species. In addition, we assess the genetic variability between two populations of the Holarctic Sepsis luteipes Melander & Spuler, 1917 from Europe and North America and find conflicting evidence between morphology and DNA sequences. Different species concepts here yield different inferences, and if two species were to be accepted based on molecular data, Sepsis helvetica Munari, 1985 from Europe would have to be resurrected from synonymy. We provide high-resolution images for all species in order to aid in accurate identification. Both species are also added to Sepsidnet, the digital reference collection for Sepsidae (http://sepsidnet-rmbr.nus.edu.sg). Lastly, we discuss a field site in the Swiss Alps where 12 species of Sepsis occur sympatrically on the same pasture.
Additional keywords: Sepsidae, Sepsis nigripes, Sepsis luteipes, species concepts.
References
Ang, Y., Puniamoorthy, J., Pont, A. C., Bartak, M., Blanckenhorn, W. U., Eberhard, W. G., Puniamoorthy, N., Silva, V. C., Munari, L., and Meier, R. (2013). A plea for digital reference collections and other science-based digitization initiatives in taxonomy: Sepsidnet as exemplar. Systematic Entomology 38, 637–644.| A plea for digital reference collections and other science-based digitization initiatives in taxonomy: Sepsidnet as exemplar.Crossref | GoogleScholarGoogle Scholar |
Becker, T. (1902). Die Meigen’schen Typen der sogen. Muscidae acalypterae (Muscaria holometopa) in Paris und Wien. Zeitschrift für systematische Hymenopterologie und Dipterologie 2, 209–256.
Blanckenhorn, W. U. (1999). Different growth responses to temperature and resource limitation in three fly species with similar life histories. Evolutionary Ecology 13, 395–409.
| Different growth responses to temperature and resource limitation in three fly species with similar life histories.Crossref | GoogleScholarGoogle Scholar |
Blanckenhorn, W. U., Muhlhauser, C., Morf, C., Reusch, T., and Reuter, M. (2000). Female choice, female reluctance to mate and sexual selection on body size in the dung fly Sepsis cynipsea. Ethology 106, 577–593.
| Female choice, female reluctance to mate and sexual selection on body size in the dung fly Sepsis cynipsea.Crossref | GoogleScholarGoogle Scholar |
Blanckenhorn, W. U., Puniamoorthy, N., Schafer, M. A., Scheffczyk, A., and Rombke, J. (2013a). Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung. Ecotoxicology and Environmental Safety 89, 21–28.
| Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKqtbbI&md5=3f1bbfa0418ca96ce446c6573e1f1582CAS | 23260241PubMed |
Blanckenhorn, W. U., Puniamoorthy, N., Scheffczyk, A., and Rombke, J. (2013b). Evaluation of eco-toxicological effects of the parasiticide moxidectin in comparison to ivermectin in 11 species of dung flies. Ecotoxicology and Environmental Safety 89, 15–20.
| Evaluation of eco-toxicological effects of the parasiticide moxidectin in comparison to ivermectin in 11 species of dung flies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ktLnE&md5=a976f5114e21b7d694d00ba8ef219b3eCAS | 23273869PubMed |
Bowsher, J. H., and Nijhout, H. F. (2007). Evolution of novel abdominal appendages in a sepsid fly from histoblasts, not imaginal discs. Evolution & Development 9, 347–354.
| Evolution of novel abdominal appendages in a sepsid fly from histoblasts, not imaginal discs.Crossref | GoogleScholarGoogle Scholar |
Bowsher, J. H., Ang, Y., Ferderer, T., and Meier, R. (2013). Deciphering the evolutionary history and developmental mechanisms of a complex sexual ornament: the abdominal appendages of Sepsidae (Diptera). Evolution 67, 1069–1080.
| Deciphering the evolutionary history and developmental mechanisms of a complex sexual ornament: the abdominal appendages of Sepsidae (Diptera).Crossref | GoogleScholarGoogle Scholar | 23550756PubMed |
Collin, J. E. (1910). Additions and corrections to the British list of Muscidae Acalyptratae. Entomologist’s Monthly Magazine 46, 173–178.
Duda, O. (1926). Monographie der Sepsiden (Dipt.). I. Annalen des Naturhistorischen Museums in Wien 39, 1–153.
Eberhard, W. G. (1999). Mating systems of sepsid flies and sexual behavior away from oviposition sites by Sepsis neocynipsea (Diptera: Sepsidae). Journal of the Kansas Entomological Society 72, 129–130.
Eberhard, W. G. (2001). Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution. Evolution 55, 93–102.
| Species-specific genitalic copulatory courtship in sepsid flies (Diptera, Sepsidae, Microsepsis) and theories of genitalic evolution.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7mt1Gltg%3D%3D&md5=562e17fec1c6d7dd9c2173201504f81aCAS | 11263749PubMed |
Frey, R. (1917). Entomologiska anteckningar fran norra Savolaks. Meddelanden af Societas pro Fauna et Flora Fennica 43, 84–97.
Frey, R. (1925). Zur Systematik der Diptera Haplostomata. (II. Fam. Sepsidae). Notulae Entomologicae 5, 69–76.
Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
| TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |
Haenni, J.-P. (1997). Sepsidae (Diptera) nouveaux pour la faune de Suisse. Bulletin Romand d’Entomologie 15, 69–78.
Haenni, J.-P. (1998) Sepsidae. In ‘Diptera – Checklist. Fauna Helvetica. Vol. 1’. (Eds B. Merz, G. Baechli, J.-P. Haenni and Y. Gonseth.) pp. 249–250. (Schweizerische Entomologische Gesellschaft: Neuchâtel.)
Hammer, O. (1941). Biological and ecological investigations on flies associated with pasturing cattle and their excrement. Videnskabelige Meddelelser Dansk Naturhistorisk Forening 105, 141–394.
Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R., and Eisen, M. B. (2008). Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLOS Genetics 4, e1000106.
| Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation.Crossref | GoogleScholarGoogle Scholar | 18584029PubMed |
Hennig, W. (1949). 39a. Sepsidae. In ‘Die Fliegen der palaearktischen Region’. (Ed. E. Lindner.) pp. 1–92. (Schweizerbart: Stuttgart.)
Heo, C. C., Mohamad, A. M., Ahmad, F. M., Jeffery, J., Kurahashi, H., and Omar, B. (2008). Study of insect succession and rate of decomposition on a partially burned pig carcass in an oil palm plantation in Malaysia. Tropical Biomedicine 25, 202–208.
| 19287358PubMed |
Ingram, K. K., Laamanen, T., Puniamoorthy, N., and Meier, R. (2008). Lack of morphological coevolution between male forelegs and female wings in Themira (Sepsidae: Diptera: Insecta). Biological Journal of the Linnean Society. Linnean Society of London 93, 227–238.
| Lack of morphological coevolution between male forelegs and female wings in Themira (Sepsidae: Diptera: Insecta).Crossref | GoogleScholarGoogle Scholar |
Iwasa, M. (1985). Supplementary Notes on the Sepsidae from Japan (Diptera). Kontyu 53, 632–638.
Iwasa, M. (1995). Revisional Notes on the Japanese Sepsidae (Diptera). Japanese Journal of Entomology 63, 781–797.
Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
| MAFFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2qsbc%3D&md5=e189c9e61a5a6227180837bc0b6e718eCAS | 15661851PubMed |
Kwong, S., Srivathsan, A., Vaidya, G., and Meier, R. (2012). Is the COI barcoding gene involved in speciation through intergenomic conflict? Molecular Phylogenetics and Evolution 62, 1009–1012.
| Is the COI barcoding gene involved in speciation through intergenomic conflict?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCjtb4%3D&md5=b4f52b7582ed7c4a8abad33d4e6fd3dbCAS | 22182989PubMed |
Laamanen, T. R., Petersen, F. T., and Meier, R. (2003). Kelp flies and species concepts - the case of Coelopa frigida (Fabricius, 1805) and C. nebularum Aldrich, 1929 (Diptera: Coelopidae). Journal of Zoological Systematics and Evolutionary Research 41, 127–136.
| Kelp flies and species concepts - the case of Coelopa frigida (Fabricius, 1805) and C. nebularum Aldrich, 1929 (Diptera: Coelopidae).Crossref | GoogleScholarGoogle Scholar |
Laamanen, T. R., Meier, R., Miller, M. A., Hille, A., and Wiegmann, B. M. (2005). Phylogenetic analysis of Themira (Sepsidae: Diptera): sensitivity analysis, alignment, and indel treatment in a multigene study. Cladistics 21, 258–271.
| Phylogenetic analysis of Themira (Sepsidae: Diptera): sensitivity analysis, alignment, and indel treatment in a multigene study.Crossref | GoogleScholarGoogle Scholar |
Lim, G. S., Balke, M., and Meier, R. (2012). Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Systematic Biology 61, 165–169.
| Determining species boundaries in a world full of rarity: singletons, species delimitation methods.Crossref | GoogleScholarGoogle Scholar | 21482553PubMed |
Martin, O. Y., and Hosken, D. J. (2003). Costs and benefits of evolving under experimentally enforced polyandry or monogamy. Evolution 57, 2765–2772.
| Costs and benefits of evolving under experimentally enforced polyandry or monogamy.Crossref | GoogleScholarGoogle Scholar | 14761055PubMed |
Martin, O. Y., Leugger, R. R., Zeltner, N., and Hosken, D. J. (2003). Male age, mating probability and mating costs in the fly Sepsis cynipsea. Evolutionary Ecology Research 5, 119–129.
Mayr, E. (2000) The Biological Species Concept. In ‘Species Concepts and Phylogenetic Theory: a Debate’. (Eds Q. D. Wheeler and R. Meier.) pp. 17–29. (Columbia University Press: New York.)
Meier, R. (1996). Larval morphology of the Sepsidae (Diptera: Sciomyzoidea), with a cladistic analysis using adult and larval characters. Bulletin of the American Museum of Natural History 228, 3–147.
Meier, R., and Willmann, R. (2000). The Hennigian species concept. In ‘Species Concepts and Phylogenetic Theory: a Debate’. (Eds Q. D. Wheeler and R. Meier.) pp. 30–43. (Columbia University Press: New York.)
Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
| DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.Crossref | GoogleScholarGoogle Scholar | 17060194PubMed |
Meier, R., Zhang, G., and Ali, F. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology 57, 809–813.
| The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification.Crossref | GoogleScholarGoogle Scholar | 18853366PubMed |
Meigen, J. W. (1826). Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. Fünfter Theil. (Schulz: Hamm)
Merz, B. (2012). ‘Liste annotée des insectes (Insecta) du canton de Genève.’ (Muséum d’histoire naturelle: Genève.)
Merz, B., Bächli, G., and Haenni, J.-P. (2001). Erster Nachtrag zur Checkliste der Diptera der Schweiz. Mitteilungen der Entomologischen Gesellschaft Basel 51, 110–140.
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans’.
Mishler, B., and Theriot, E. (2000) The Phylogenetic Species Concept sensu Mishler and Theriot: monophyly, apomorphy, and phylogenetic species concepts. In ‘Species Concepts and Phylogenetic Theory: a Debate’. (Eds Q. D. Wheeler and R. Meier.) pp. 44–54. (Columbia University Press: New York.)
Moritz, C. (1994). Defining Evolutionarily-Significant-Units for conservation. Trends in Ecology & Evolution 9, 373–375.
| Defining Evolutionarily-Significant-Units for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=d3ad80b86b2bf03a1de996040dd96f32CAS |
Munari, L. (1985). Una nuova specie di Sepsis del gruppo ‘punctum’ (Diptera, Sepsidae). Notulae Sepsidologicae 9. Societa Veneziana di Scienze Naturali Lavori 10, 51–57.
Ozerov, A. L. (1999). 88. Fam. Sepsidae. In ‘Key to the insects of the Russian Far East. 6, Diptera and Siphonaptera, part 1’. (Ed. L.P. Ler.) pp. 556–570. (Dal’nauka: Vladivostok.)
Ozerov, A.L. (2005). World catalogue of the family Sepsidae (Insecta: Diptera). Zoologicheskie issledovania (Zoological Studies) 8, 1–74.
Papp, L. (2007). A study of the cow pat Diptera on the Hortobágy, Hungary. Folia Entomologica Hungarica 68, 123–135.
Parker, G. A. (1972). Reproductive behavior of Sepsis cynipsea (L.) (Diptera-Sepsidae). 1. Preliminary analysis of reproductive strategy and its associated behavior patterns. Behaviour 41, 172.
| Reproductive behavior of Sepsis cynipsea (L.) (Diptera-Sepsidae). 1. Preliminary analysis of reproductive strategy and its associated behavior patterns.Crossref | GoogleScholarGoogle Scholar |
Pont, A. C. (1979). Sepsidae. Diptera Cyclorrhapha, Acalyptrata. Handbooks for the Identification of British Insects 10, 1–35.
Pont, A. C., and Meier, R. (2002). The Sepsidae (Diptera) of Europe. Fauna Entomologica Scandinavica 37, 1–221.
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
| jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=a227fa0ae4120a3a8c06cab96986f12aCAS | 18397919PubMed |
Puniamoorthy, N., Su, K. F., and Meier, R. (2008). Bending for love: losses and gains of sexual dimorphisms are strictly correlated with changes in the mounting position of sepsid flies (Sepsidae: Diptera). BMC Evolutionary Biology 8, 155–166.
| Bending for love: losses and gains of sexual dimorphisms are strictly correlated with changes in the mounting position of sepsid flies (Sepsidae: Diptera).Crossref | GoogleScholarGoogle Scholar | 18492287PubMed |
Puniamoorthy, N., Ismail, M. R., Tan, D. S., and Meier, R. (2009). From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae). Journal of Evolutionary Biology 22, 2146–2156.
| From kissing to belly stridulation: comparative analysis reveals surprising diversity, rapid evolution, and much homoplasy in the mating behaviour of 27 species of sepsid flies (Diptera: Sepsidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2Fhtlyhuw%3D%3D&md5=a4ba11d02dbb431ffe26515fc15ac649CAS | 19732260PubMed |
Puniamoorthy, N., Kotrba, M., and Meier, R. (2010). Unlocking the “Black box”: internal female genitalia in Sepsidae (Diptera) evolve fast and are species-specific. BMC Evolutionary Biology 10, 275.
| 20831809PubMed |
Puniamoorthy, N., Schafer, M. A., and Blanckenhorn, W. U. (2012). Sexual selection accounts for the geographic reversal of sexual size dimorphism in the dung fly, Sepsis punctum (Diptera: Sepsidae). Evolution 66, 2117–2126.
| Sexual selection accounts for the geographic reversal of sexual size dimorphism in the dung fly, Sepsis punctum (Diptera: Sepsidae).Crossref | GoogleScholarGoogle Scholar | 22759289PubMed |
Shahjahan, R. M., Hughes, K. J., Leopold, R. A., and DeVault, J. D. (1995). Lower incubation temperature increases yield of insect genomic DNA isolated by the CTAB method. BioTechniques 19, 332–334.
| 1:CAS:528:DyaK2MXnvFans7w%3D&md5=44d707c73d794673d5af794b9dfc5321CAS | 7495537PubMed |
Srivathsan, A., and Meier, R. (2012). On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194.
| On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature.Crossref | GoogleScholarGoogle Scholar |
Su, K. F. Y., Kutty, S. N., and Meier, R. (2008). Morphology versus molecules: the phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequence data from ten genes. Cladistics 24, 902–916.
| Morphology versus molecules: the phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequence data from ten genes.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=5ee5a71f721d24a7782516dc0ff5fcfcCAS | 21546353PubMed |
Tan, D. S. H., Ang, Y., Lim, G. S., Ismail, M. R. B., and Meier, R. (2010). From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta 39, 51–61.
| From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera).Crossref | GoogleScholarGoogle Scholar |
Tan, D. S. H., Ng, S. R., and Meier, R. (2011). New information on the evolution of mating behaviour in Sepsidae (Diptera) and the cost of male copulations in Saltella sphondylii. Organisms, Diversity & Evolution 11, 253–261.
| New information on the evolution of mating behaviour in Sepsidae (Diptera) and the cost of male copulations in Saltella sphondylii.Crossref | GoogleScholarGoogle Scholar |
Teuschl, Y., and Blanckenhorn, W. (2007). The reluctant fly: what makes Sepsis cynipsea females willing to copulate? Animal Behaviour 73, 85–97.
| The reluctant fly: what makes Sepsis cynipsea females willing to copulate?Crossref | GoogleScholarGoogle Scholar |
Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
| SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |
Wheeler, Q. D., and Meier, R. (2000). ‘Species Concepts and Phylogenetic Theory. A Debate.’ (Columbia University Press: New York.)
Wheeler, Q. D., and Platnick, N. I. (2000). The Phylogenetic Species Concept sensu Wheeler and Platnick. In ‘Species Concepts and Phylogenetic Theory: a Debate’. (Eds Q. D. Wheeler and R. Meier.) pp. 55–69. (Columbia University Press: New York.)
Wiley, E. O., and Mayden, R. L. (2000). The Evolutionary Species Concept. In ‘Species Concepts and Phylogenetic Theory: a Debate’. (Eds Q. D. Wheeler and R. Meier.) pp. 70–89. (Columbia University Press: New York.)
Zhao, L., Annie, A. S., Amrita, S., Yi, S. K., and Rudolf, M. (2013). Does better taxon sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution 69, 153–164.
| Does better taxon sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and nuclear markers.Crossref | GoogleScholarGoogle Scholar | 23707858PubMed |
Zuska, J. (1970). Zoogeographic aspects of the European fauna of the family Sepsidae (Diptera). Polskie Pismo Entomologiczne 40, 605–610.
Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin.