Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

From Gondwana to Europe: inferring the origins of Mediterranean Macrothele spiders (Araneae : Hexathelidae) and the limits of the family Hexathelidae

Vera Opatova A B and Miquel A. Arnedo A
+ Author Affiliations
- Author Affiliations

A Institut de Recerca de la Biodiversitat & Departament de Biologia Animal, Universitat de Barcelona. Avinguda Diagonal 643, 08028 Barcelona, Spain.

B Corresponding author. Email: Vera.Opatova@gmail.com

Invertebrate Systematics 28(4) 361-374 https://doi.org/10.1071/IS14004
Submitted: 12 January 2014  Accepted: 5 April 2014   Published: 12 September 2014

Abstract

The family Hexathelidae ranks among the smaller mygalomorph spider families. Most species are endemic to the Australasian region and the family was traditionally considered an example of a Gondwanan lineage. However, recent studies have cast some doubt on the monophyly of the family. Macrothele is the only genus with an out-of-Gondwana distribution. The bulk of the Macrothele diversity is found in South-east Asia, few species are known from central Africa and two species inhabit Europe: Macrothele calpeiana (Walckenaer, 1805) from the Iberian Peninsula and Macrothele cretica Kulczynski, 1903 endemic to Crete. Here we investigate the origins of the European Macrothele species by means of a multi-locus phylogenetic approach and by inferring the time frame of the diversification of the genus using Bayesian relaxed clock methods. We also provide further insights into the phylogenetic status of the family Hexathelidae. Our results indicate that the diversification of Macrothele traces back to the period of the Gondwana break-up and its present-day distribution most likely reflects the subsequent tectonic plate movements. The two European species were not recovered as sister taxa, suggesting that Macrothele colonised the Mediterranean region twice independently. The polyphyly of the family Hexathelidae is further confirmed and the subfamily Atracinae is identified as the conflicting lineage.


References

Abascal, F., Zardoya, R., and Telford, M. J. (2010). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research 38, 7–13.
TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.Crossref | GoogleScholarGoogle Scholar |

Ali, J. R., and Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88, 145–166.

Arnedo, M. A., and Ferrández, M. A. (2007). Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae). Conservation Genetics 8, 1147–1162.
Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlSgsrY%3D&md5=874fad30b4198f031524a9b3ea36ff5fCAS |

Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1g), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution 42, 394–409.
Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1g), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbjK&md5=51ed48ffaa4ebedf340fe5444bc5c700CAS | 16971146PubMed |

Bauzà-Ribot, M. M., Juan, C., Nardi, F., Oromí, P., Pons, J., and Jaume, D. (2012). Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology 22, 2069–2074.
Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans.Crossref | GoogleScholarGoogle Scholar | 23063439PubMed |

Bergsten, J. (2005). A review of long-branch attraction. Cladistics 21, 163–193.
A review of long-branch attraction.Crossref | GoogleScholarGoogle Scholar |

Bidegaray-Batista, L., and Arnedo, M. A. (2011). Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. BMC Evolutionary Biology 11, 317.
| 22039781PubMed |

Bidegaray-Batista, L., Ferrández, M. Á., and Arnedo, M. A. (2013). Winter is coming: Miocene and Quaternary climatic shifts shaped the diversification of Western-Mediterranean Harpactocrates (Araneae, Dysderidae) spiders. Cladistics 30, 428–446.
Winter is coming: Miocene and Quaternary climatic shifts shaped the diversification of Western-Mediterranean Harpactocrates (Araneae, Dysderidae) spiders.Crossref | GoogleScholarGoogle Scholar |

Blakey, R. C. (2008). Gondwana paleogeography from assembly to breakup – a 500 m.y. odyssey. Geological Society of America. Special Paper 441, 1–28.

Blasco, A., and Ferrández, M. A. (1986). El género Macrothele Ausserer, 1871 (Araneae: Dipluridae) en la Península Ibérica. In ‘X International Congress of Arachnology’, 1986, Jaca, Spain, pp. 311–320.

Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FN&md5=ddbc7963a4604a6a5267264feaee6ac8CAS | 18686196PubMed |

Bond, J. E., Hedin, M. C., Ramirez, M. G., and Opell, B. D. (2001). Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology 10, 899–910.
Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVensbs%3D&md5=96dbbadf2801b012ac8ce223cb326495CAS | 11348499PubMed |

Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS ONE 7, e38753.
A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlSntr0%3D&md5=799d079468e3d51520fd18488c543fd1CAS | 22723885PubMed |

Bosworth, W., Huchon, P., and McClay, K. (2005). The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences 43, 334–378.
The Red Sea and Gulf of Aden Basins.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C. (2003). The biogeographic and tectonic history of India. Journal of Biogeography 30, 381–388.
The biogeographic and tectonic history of India.Crossref | GoogleScholarGoogle Scholar |

Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1KrsLw%3D&md5=556042f4f7f45e8b714dadd0339e296aCAS |

Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 19505945PubMed |

Chen, J.-Y. (2009). The sudden appearance of diverse animal body plans during the Cambrian explosion. The International Journal of Developmental Biology 53, 733–751.
The sudden appearance of diverse animal body plans during the Cambrian explosion.Crossref | GoogleScholarGoogle Scholar | 19557680PubMed |

Collins, N. M., and Wells, S. (1987). Invertebrates in need of special protection in Europe. Augier H. Nature & Environment Series No. 35. Council of Europe, Strasbourg. pp. 162.

Corzo, G., Gilles, N., Satake, H., Villegas, E., Dai, L., Nakajima, T., and Haupt, J. (2003). Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Letters 547, 43–50.
Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVaitbc%3D&md5=be3093c6bf130b3813de563ebda695eeCAS | 12860384PubMed |

Drummond, A. J., Ho, S. Y., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Drummond, A., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., and Wilson, A. (2010). Geneious v.5.3. Available from http://www.geneious.com [Accessed August 2011]

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution.

Ferrández, M. A., and Ferrández de Cespedes, H. (2001). Arachnida. In ‘Los Invertebrados no Insectos de la “Directiva Hábitat” en España’. (Eds M.A. Ramos, D. Bragado and J. Fernández.) pp. 133–144. (Ministerio de Medio Ambiente. Dirección Genaral de la Conservación de la naturaleza.)

Ferrández, M. A., Ferrández de Cespedes, H., and Perucho, A. (1998). Macrothele calpeiana, la araña negra de los alcornocales. Quercus 146, 14–18.

Fok, K. W., Wade, C. M., and Parkin, D. T. (2002). Inferring the phylogeny of disjunct populations of the azure-winged magpie Cyanopica cyanus from mitochondrial control region sequences. Proceedings of the Royal Society of London. Series B, Biological Sciences 269, 1671–1679.
Inferring the phylogeny of disjunct populations of the azure-winged magpie Cyanopica cyanus from mitochondrial control region sequences.Crossref | GoogleScholarGoogle Scholar |

Gao, L., Shan, B.-E., Chen, J., Liu, J.-H., Song, D.-X., and Zhu, B.-C. (2005). Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells. Acta Pharmacologica Sinica 26, 369–376.
Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGitro%3D&md5=5315e1f99c80036bfbfe412e0fbded58CAS | 15715936PubMed |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVylur8%3D&md5=12d70fb007b406aad2b3d1737a48a9adCAS | 8583909PubMed |

Giribet, G., Rambla, M., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1999). Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Molecular Phylogenetics and Evolution 11, 296–307.
Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFOnu7c%3D&md5=0250390a8e415d0e2b7221387edefd92CAS | 10191074PubMed |

Goloboff, P. A. (1993). A reanalysis of mygalomorph spider families (Araneae). American Museum Novitates 3056, 1–32.

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2003). TNT: tree analysis using new technologies. Edn 1.0. Program and documentation available at http://www. zmuc. dk/public/phylogeny/TNT/ [Accessed December 2013]

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Gravely, F. H. (1915). Records of the Indian Museum. Vol. 11. pp. 257–287. (Published by order of the trustees of the Indian Museum: Calcutta.)

Gray, M. R. (1988). Aspects of the systematics of the Australian funnel web spiders (Araneae: Hexathelidae: Atracinae) based upon morphological and electrophoretic data. Australian Entomology Society Miscellaneous Publication 5, 113–125.

Gray, M. (2010). A revision of the Australian funnel-web spiders (Hexathelidae: Atracinae). Records of the Australian Museum 62, 285–392.
A revision of the Australian funnel-web spiders (Hexathelidae: Atracinae).Crossref | GoogleScholarGoogle Scholar |

Haupt, J. (2008). An organ of stridulation in East Asian Hexathelid spiders (Araneae, Mygalomorphae). Revista Ibérica de Aracnología 15, 19–23.

Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41, 454–471.
Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagtbzF&md5=76f5c545683775acbd43577ad96d737eCAS | 16815045PubMed |

Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=cedf4973ea9822c87cf2bcd4c96f698aCAS | 11277632PubMed |

Hu, J. L., and Li, F. J. (1986). On two species of Macrothele from China (Araneae: Dipluridae). Acta Zootaxonomica Sinica 11, 35–39.

Hung, S.-W., and Wang, T.-L. (2004). Arachnid envenomation in Taiwan. Annals of Disaster Medicine 3, S12–S17.

Jiménez-Valverde, A. (2009). Absence points of Macrothele calpeiana (Walckenaer, 1805) (Araneae: Hexathelidae) in Morocco (North Africa). Boletın de la Sociedad Entomológica Aragonesa 44, 559–561.

Jiménez-Valverde, A., and Lobo, J. M. (2006a). Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae). Environmental Entomology 35, 1491–1499.
Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae).Crossref | GoogleScholarGoogle Scholar |

Jiménez-Valverde, A., and Lobo, J. M. (2006b). Establishing reliable spider (Araneae, Araneidae and Thomisidae) assemblage sampling protocols: estimation of species richness, seasonal coverage and contribution of juvenile data to species richness and composition. Acta Oecologica 30, 21–32.
Establishing reliable spider (Araneae, Araneidae and Thomisidae) assemblage sampling protocols: estimation of species richness, seasonal coverage and contribution of juvenile data to species richness and composition.Crossref | GoogleScholarGoogle Scholar |

Jimenez-Valverde, A., and Lobo, J. M. (2007). Potential distribution of the endangered spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae) and the impact of climate warming. Acta Zoologica Sinica 53, 865–876.

Jiménez-Valverde, A., Decae, A. E., and Arnedo, M. A. (2011). Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. Journal of Biogeography 38, 1213–1223.
Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=d3f40cfe601202676deea9a82d9894d7CAS | 18372315PubMed |

Kunt, K. B., Kaya, R. S., Özkütük, R. S., Danisman, T., Yagmur, E. A., and Elverici, M. (2012). Additional notes on the spider fauna of Turkey (Araneae). Turkish Journal of Zoology 36, 637–651.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=6252e96674fb862520ea0b491079d71fCAS | 22319168PubMed |

Liu, Z., Zhao, Y., Li, J., Xu, S., Liu, C., Zhu, Y., and Liang, S. (2012). The venom of the spider Macrothele raveni induces apoptosis in the myelogenous leukemia K562 cell line. Leukemia Research 36, 1063–1066.
The venom of the spider Macrothele raveni induces apoptosis in the myelogenous leukemia K562 cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFSrsLo%3D&md5=33ed31b2972baf8b06e3db6449b55083CAS | 22459330PubMed |

Mallatt, J., and Sullivan, J. (1998). 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Molecular Biology and Evolution 15, 1706–1718.
28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVyh&md5=5d66ec6c0caa31bbbefaf99cbec95ba5CAS | 9866205PubMed |

McCarthy, D. (2003). The trans-Pacific zipper effect: disjunct sister taxa and matching geological outlines that link the Pacific margins. Journal of Biogeography 30, 1545–1561.
The trans-Pacific zipper effect: disjunct sister taxa and matching geological outlines that link the Pacific margins.Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. pp. 1–8. (New Orleans, LA.)

Müller, K. (2006). Incorporating information from length-mutational events into phylogenetic analysis. Molecular Phylogenetics and Evolution 38, 667–676.
Incorporating information from length-mutational events into phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 16129628PubMed |

Opatova, V., Bond, J. E., and Arnedo, M. A. (2013). Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution 69, 1135–1145.
Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 23954655PubMed |

Pedersen, A. A., and Loeschcke, V. (2001). Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe. Molecular Ecology 10, 1133–1142.
Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKitbo%3D&md5=e25ac61013ffa78b196127108c9b7014CAS | 11380872PubMed |

Penney, D., and Selden, P. A. (2011). ‘Fossil Spiders: The Evolutionary History of a Mega-diverse Order.’ (Siri Scientific Press: Manchester, UK.)

Platnick, N. I. (2014). The world spider catalog. Edn 14.5. American Museum of Natural History, New York. Available online at http://research.amnh.org/iz/spiders/catalog [accessed 26 March 2014.]

Platnick, N. I., and Gertsch, W. J. (1976). The suborder of spiders: a cladistic analysis. American Museum Novitates 2607, 1–15.

Platnick, N. I., and Nelson, G. (1978). A method of analysis for historical biogeography. Systematic Biology 27, 1–16.

Rambaut, A. (2009). FigTree v.1.3.1. Edn. 1.3.1. Available from http://tree.bio.ed.ac.uk/software/figtree/ (accessed on March 26, 2010).

Rambaut, A., and Drummond, A. J. (2009). TRACER v.1.5. Edn. 1.4. Available from http://tree.bio.ed.ac.uk/software/tracer/ (accessed on December 1, 2009).

Raven, R. (1978). Systematics of spider subfamily Hexathelinae (Dipluridae: Mygalomorphae: Arachnida). Australian Journal of Zoology 26, 1–75.
Systematics of spider subfamily Hexathelinae (Dipluridae: Mygalomorphae: Arachnida).Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1980). The evolution and biogeography of the mygalomorph spider family Hexathelidae (Araneae, Chelicerata). The Journal of Arachnology 8, 251–266.

Raven, R. J. (1985). The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182, 1–180.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Sanderson, M. J. (1997). A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution 14, 1218–1231.
A nonparametric approach to estimating divergence times in the absence of rate constancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVCrsbk%3D&md5=f11aaa973930d49d1ea2918ac43afbf2CAS |

Sanmartin, I., and Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns.Crossref | GoogleScholarGoogle Scholar | 15205050PubMed |

Sanmartin, I., Enghoff, H., and Ronquist, F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society. Linnean Society of London 73, 345–390.
Patterns of animal dispersal, vicariance and diversification in the Holarctic.Crossref | GoogleScholarGoogle Scholar |

Satake, H., Villegas, E., Oshiro, N., Terada, K., Shinada, T., and Corzo, G. (2004). Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon 44, 149–156.
Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFertLg%3D&md5=b1c5b9a15d3cd1ad7162d36b1894e258CAS | 15246762PubMed |

Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |

Selden, P. A. (1996). First fossil mesothele spider, from the Carboniferous of France. Revue suisse de Zoologie hors série, 585–596.

Selden, P. A., and Gall, J. C. (1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35, 211–235.

Selden, P. A., and Nudds, J. R. (2012). ‘Evolution of Fossil Ecosystems.’ Edn 2. (Manson Publishing Ltd.: London.) pp. 288.

Selden, P. A., Shear, W. A., and Bonamo, P. M. (1991). A spider and other arachnids from the Devonian of New York, and a reinterpretation of Devonian Araneae. Palaeontology 34, 241–281.

Selden, P. A., Shear, W. A., and Sutton, M. D. (2008). Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences of the United States of America 105, 20781–20785.
Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1GktA%3D%3D&md5=770da647ac773cac9467c0e3cd2dc0fcCAS | 19104044PubMed |

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492–508.
An approximately unbiased test of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 12079646PubMed |

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.
CONSEL: for assessing the confidence of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FgtFOlsw%3D%3D&md5=2e6b69bf2a602aaab2c623f68e7e43d2CAS | 11751242PubMed |

Shimojana, M., and Haupt, J. (1998). Taxonomy and natural history of the funnel-web spider genus Macrothele (Araneae: Hexathelidae: Macrothelinae) in the Ryukyu Islands (Japan) and Taiwan. Species Diversity 3, 1–15.

Silvestro, D., and Michalak, I. (2011). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution , .
raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |

Simmons, M. P., and Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
| 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=e6ffb4900389997eafb5eff8c903855cCAS | 12118412PubMed |

Simon, E. (1906). Arachnides (2e partie). Voyage de M. Maurice Maindron dans l’Inde méridionale. Annales de la Société Entomologique de France 75, 279–314.

Smith, S. A., and Dunn, C. W. (2008). Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715–716.
Phyutility: a phyloinformatics tool for trees, alignments and molecular data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKltb0%3D&md5=68865b94dd51d09f4c4cdf6c6e1beac2CAS | 18227120PubMed |

Snazell, R. G. (1986). The spider genus Macrothele Ausserer in Spain (Araneae, Dipluridae). Bulletin of the British Arachnological Society 17, 80–83.

Snazell, R. G., and Allison, R. (1989). The genus Macrothele Ausserer (Araneae; Hexathelidae) in Europe. Bulletin of the British Arachnological Society 8, 65–72.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=b0df768ad6679df0c2d42f77d14048ddCAS | 16928733PubMed |

Stock, J. H. (1993). Some remarkable distribution patterns in stygobiont Amphipoda. Journal of Natural History 27, 807–819.
Some remarkable distribution patterns in stygobiont Amphipoda.Crossref | GoogleScholarGoogle Scholar |

Van Helsdingen, P. J. (1993). Can Macrothele calpeiana (Walckenaer) (Araneae, Hexathelidae) be used as a bio-indicator? Bulletin de la Société neuchâteloise des sciences naturelles 116, 253–258.

Van Helsdingen, P. J., and Decae, A. (1992). Ecology, distribution and vulnerability of Macrothele calpeiana (Walckenaer) (Araneae, Hexathelidae). Tijdschrift voor Entomologie 135, 169–178.

Veevers, J. J. (2004). Gondwanaland from 650‚500 Ma assembly through 320 Ma merger in Pangea to 185‚100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews 68(1‚2), 1–132.

Wilcox, T. P. (2004). Cadence v. 1.0. Available at http://www.biosci.utexas.edu/antisense/.

Wilcox, T. P., Garcia de Leon, F. J., Hendrickson, D. A., and Hillis, D. M. (2004). Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Molecular Phylogenetics and Evolution 31, 1101–1113.
Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1alsb0%3D&md5=f4847b398c15cb390d8b817903764a61CAS | 15120403PubMed |

Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J., and Mallatt, J. (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution 19, 762–776.
Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFaku7k%3D&md5=f192fb2ae5fd058f6159d9afefc40d86CAS | 11961109PubMed |

Wunderlich, J. (1986). ‘Spinnenfauna gestern und heute.’ (Publishing House Joerg Wunderlich: Hirschberg, Germany.) pp. 283.

Wunderlich, J. (2004). Fossil spiders in amber and copal. Beiträge zur Araneologie 3A, 1–850.

Yamaji, N., Little, M. J., Nishio, H., Billen, B., Villegas, E., Nishiuchi, Y., Tytgat, J., Nicholson, G. M., and Corzo, G. (2009). Synthesis, solution structure, and phylum selectivity of a spider δ-toxin that slows inactivation of specific voltage-gated sodium channel subtypes. The Journal of Biological Chemistry 284, 24568–24582.
Synthesis, solution structure, and phylum selectivity of a spider δ-toxin that slows inactivation of specific voltage-gated sodium channel subtypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgsrrE&md5=8701a4c7545af8e9643e00c88ef99e4aCAS | 19592486PubMed |

Yoder, A. D., and Nowak, M. D. (2006). Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology Evolution and Systematics 37, 405–431.
Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell.Crossref | GoogleScholarGoogle Scholar |

Zeng, X., Xiao, Q., and Liang, S. (2003). Purification and characterization of raventoxin-I and raventoxin-III, two neurotoxic peptides from the venom of the spider Macrothele raveni. Toxicon 41, 651–656.
Purification and characterization of raventoxin-I and raventoxin-III, two neurotoxic peptides from the venom of the spider Macrothele raveni.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1ensLg%3D&md5=608c14e2ceea447703783052dffed489CAS | 12727269PubMed |

Zhu, M. S., and Song, D. X. (2000). Review of the Chinese funnel-web spiders of the genus Macrothele, with descriptions of two new species (Araneae: Hexathelidae). The Raffles Bulletin of Zoology 48, 59–64.