Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetics of scolopendromorph centipedes: can denser taxon sampling improve an artificial classification?

Varpu Vahtera A B E , Gregory D. Edgecombe C and Gonzalo Giribet D
+ Author Affiliations
- Author Affiliations

A Finnish Museum of Natural History, Zoology Unit, PO Box 17, FI-00014 University of Helsinki, Finland.

B Zoological Museum, Department of Biology, FI-20014 University of Turku, Finland.

C Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.

D Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

E Corresponding author. Email: varpu.vahtera@utu.fi

Invertebrate Systematics 27(5) 578-602 https://doi.org/10.1071/IS13035
Submitted: 13 July 2013  Accepted: 16 September 2013   Published: 31 October 2013

Abstract

Previous phylogenetic analyses of the centipede order Scolopendromorpha indicated a fundamental division into blind and ocellate clades. These analyses corroborated the monophyly of most families and tribes but suggested that several species-rich, cosmopolitan genera in traditional and current classifications are polyphyletic. Denser taxon sampling is applied to a dataset of 122 morphological characters and sequences for four nuclear and mitochondrial loci. Phylogenetic analyses including 98 species and subspecies of Scolopendromorpha employ parsimony under dynamic and static homology schemes as well as maximum likelihood and Bayesian inference of multiple sequence alignments. The monotypic Australian genera Notiasemus and Kanparka nest within Cormocephalus and Scolopendra, respectively, and the New Caledonian Campylostigmus is likewise a clade within Cormocephalus. New World Scolopendra are more closely related to Hemiscolopendra and Arthrorhabdus than to Scolopendra s.s., which is instead closely allied to Asanada; the tribe Asanadini nests within Scolopendrini for molecular and combined datasets. The generic classification of Otostigmini has a poor fit to phylogenetic relationships, although nodal support within this tribe is weak. New synonymies are proposed for Ectonocryptopinae Shelley & Mercurio, 2005 (= Newportiinae Pocock, 1896), Asanadini Verhoeff, 1907 (= Scolopendrini Leach, 1814), and Kanparka Waldock & Edgecombe, 2012 (= Scolopendra Linnaeus, 1758). Scolopendrid systematics largely depicts incongruence between phylogeny and classification rather than between morphology and molecules.

Additional keywords: Chilopoda, molecules, morphology, phylogeny, Scolopendromorpha.


References

Attems, C. (1928). The Myriapoda of South Africa. Annals of the South African Museum 26, 1–431.

Attems, G. (1930). Myriapoda 2. Scolopendromorpha. In ‘Das Tierreich’. (Eds F. E. Schulze and W. Kükenthal.) pp. 1–306. (Walter de Gruyter: Berlin, Leipzig, Germany.)

Attems, C. (1934). Neue Myriopoden des Museums Basel. Verhandlungen der Naturforschenden Gesellschaft in Basel 45, 43–62.

Bonato, L., Edgecombe, G. D., and Zapparoli, M. (2011). Chilopoda – taxonomic overview. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Volume 1’. (Ed. A. Minelli.) pp. 363–443. (Brill: Leiden, The Netherlands.)

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=4f0bead240a37b4016ad6f96f71b9e01CAS | 10742046PubMed |

Chagas-Júnior, A. (2011). A review of the centipede genus Tidops Chamberlin (Scolopendromorpha, Scolopocryptopidae, Newportiinae). International Journal of Myriapodology 5, 63–82.
A review of the centipede genus Tidops Chamberlin (Scolopendromorpha, Scolopocryptopidae, Newportiinae).Crossref | GoogleScholarGoogle Scholar |

Chao, J. L. (2008). ‘Scolopendromorpha (Chilopoda) of Taiwan. Collection, Description, Illustration, Taxonomy, Distribution.’ (VDM Verlag Dr. Müller: Saarbrücken, Germany.)

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=fb309fc886ca0bad32dc0daac67aa1f7CAS | 15034147PubMed |

Edgecombe, G. D., and Bonato, L. (2011). Chilopoda – taxonomic overview. Order Scolopendromorpha. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Volume 1’. (Ed. A. Minelli.) pp. 392–407. (Brill: Leiden, The Netherlands.)

Edgecombe, G. D., and Koch, M. (2008). Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area. Cladistics 24, 872–901.
Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area.Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., and Koch, M. (2009). The contribution of preoral chamber and foregut morphology to the phylogenetics of Scolopendromorpha (Chilopoda). Soil Organisms 81, 295–318.

Edgecombe, G. D., Vahtera, V., Stock, S. R., Kallonen, A., Xiao, X., Rack, A., and Giribet, G. (2012). A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set. Zoological Journal of the Linnean Society 166, 768–786.
A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set.Crossref | GoogleScholarGoogle Scholar |

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
Parsimony jackknifing outperforms neighbor-joining.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=5041ee59b321d3be53c601c4defe3469CAS | 7881515PubMed |

Giribet, G. (2007). Efficient tree searches with available algorithms. Evolutionary Bioinformatics Online 3, 341–356.
| 1:CAS:528:DC%2BD1cXjvVWlsL4%3D&md5=0d4b24bf58a53ab10d1cb7eb67adc5ffCAS | 19461977PubMed |

Giribet, G., and Shear, W. A. (2010). The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bulletin of the Museum of Comparative Zoology 160, 1–33.
The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVylur8%3D&md5=4c5b6d64e3e18a8fd7f3f6c62ccc683eCAS | 8583909PubMed |

Goloboff, P. A., and Pol, D. (2005). Parsimony and Bayesian phylogenetics. In ‘Parsimony, Phylogeny and Genomics’. (Ed. V. A. Albert.) pp. 148–159. (Oxford University Press: New York.)

Goloboff, P. A., Farris, J. S., Källersjö, M., Oxelman, B., Ramírez, M., and Szumik, C. A. (2003). Improvements to resampling measures of group support. Cladistics 19, 324–332.
Improvements to resampling measures of group support.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Joshi, J., and Edgecombe, G. D. (2013). Revision of the scolopendrid centipede Digitipes Attems, 1930, from India (Chilopoda: Scolopendromorpha): reconciling molecular and morphological estimates of species diversity. Zootaxa 3626, 99–145.
Revision of the scolopendrid centipede Digitipes Attems, 1930, from India (Chilopoda: Scolopendromorpha): reconciling molecular and morphological estimates of species diversity.Crossref | GoogleScholarGoogle Scholar |

Joshi, J., and Karanth, K. P. (2011). Cretaceous–Tertiary diversification among select scolopendrid centipedes of South India. Molecular Phylogenetics and Evolution 60, 287–294.
Cretaceous–Tertiary diversification among select scolopendrid centipedes of South India.Crossref | GoogleScholarGoogle Scholar | 21575731PubMed |

Koch, L. E. (1982). Taxonomy of the centipede Scolopendra laeta Haase (Chilopoda: Scolopendridae) in Australia. Zoological Journal of the Linnean Society 76, 125–140.

Koch, M., Pärschke, S., and Edgecombe, G. D. (2009). Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda). Zoologica Scripta 38, 269–288.
Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Koch, M., Edgecombe, G. D., and Shelley, R. M. (2010). Anatomy of Ectonocryptoides (Scolopocryptopidae: Ectonocryptopinae) and the phylogeny of blind Scolopendromorpha (Chilopoda). International Journal of Myriapodology 3, 51–81.
Anatomy of Ectonocryptoides (Scolopocryptopidae: Ectonocryptopinae) and the phylogeny of blind Scolopendromorpha (Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Kraepelin, K. (1903). ‘Revision der Scolopendriden.’ (Kommissionsverlag von Lucas Gräfe & Sillem: Hamburg, Germany.)

Kronmüller, C. (2012). Review of the subspecies of Scolopendra subspinipes Leach, 1815 with the new description of the South Chinese member of the genus Scolopendra Linnaeus, 1758 named Scolopendra hainanum spec. nov. (Myriapoda, Chilopoda, Scolopendridae). Spixiana 35, 19–27.

Lawrence, R. F. (1955). A revision of the centipedes (Chilopoda) of Natal and Zululand. Annals of the Natal Museum 13, 121–174.

Lewis, J. G. E. (1986). The genus Trachycormocephalus a junior synonym of Scolopendra, with remarks on the validity of other genera of the tribe Scolopendrini (Chilopoda: Scolopendromorpha). Journal of Natural History 20, 1083–1087.
The genus Trachycormocephalus a junior synonym of Scolopendra, with remarks on the validity of other genera of the tribe Scolopendrini (Chilopoda: Scolopendromorpha).Crossref | GoogleScholarGoogle Scholar |

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological characters data. Systematic Biology 50, 913–925.
A likelihood approach to estimating phylogeny from discrete morphological characters data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntVKlsQ%3D%3D&md5=69cf19874f67b12254fb7f31f41cf41fCAS | 12116640PubMed |

Lewis, J. G. E. (2004). Redescription and reassignment of the type material of the African centipedes Otostigmus reichardti Kraepelin and Otostigmus tanganjikus Verhoeff, with remarks on the genera Digitipes Attems, Otostigmus Porat and Rhysida Wood (Chilopoda: Scolopendromorpha). African Invertebrates 45, 279–286.

Lewis, J. G. E. (2011). A review of the species in the genus Cryptops Leach, 1815 from the Old World related to Cryptops (Cryptops) hortensis (Donovan, 1810) (Chilopoda, Scolopendromorpha). International Journal of Myriapodology 4, 11–50.
A review of the species in the genus Cryptops Leach, 1815 from the Old World related to Cryptops (Cryptops) hortensis (Donovan, 1810) (Chilopoda, Scolopendromorpha).Crossref | GoogleScholarGoogle Scholar |

Lewis, J. G. E. (2013). A review of the species in the genus Cryptops Leach, 1815 from the Old World and the Australasian region related to Cryptops (Cryptops) doriae Pocock, 1891 (Chilopoda: Scolopendromorpha: Cryptopidae). Zootaxa 3683, 1–34.
A review of the species in the genus Cryptops Leach, 1815 from the Old World and the Australasian region related to Cryptops (Cryptops) doriae Pocock, 1891 (Chilopoda: Scolopendromorpha: Cryptopidae).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’. New Orleans pp. 1–8.

Minelli, A., Bonato, L., Dioguardi, R., Chagas, J. A., Edgecombe, G. D., Lewis, J. G. E., Pereira, L. A., Shelley, R. M., Stoev, P., Uliana, M., and Zapparoli, M. (2006 and onwards). CHILOBASE. A web resource for Chilopoda taxonomy. Publicly searchable at http://chilobase.bio.unipd.it (Verified 7 October 2013]

Muadsub, S., Sutcharit, C., Pimvichai, P., Enghoff, H., Edgecombe, G. D., and Panha, S. (2012). Revision of the rare centipede genus Sterropristes Attems, 1934, with description of a new species from Thailand (Chilopoda: Scolopendromorpha: Scolopendridae). Zootaxa 3484, 35–52.

Porat, C. O. v. (1876). Om några esotiska Myriopoder. Bihang till Kongliga Svenska Vetenskaps – Akademien Handlingar 4, 1–48.

Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A. (1996). Se-Al version 2.0a11. Program and documentation available at: http://tree.bio.ed.ac.uk/software/seal/ [Verified 7 October 2013]

Ronquist, F., and Huelsenbeck, J. P. (2005). MrBayes v. 3.1.1 (Bayesian analysis of phylogeny). Program and documentation available at http://mrbayes.csit.fsu.edu/index.php [Verified 7 October 2013]

Schileyko, A. A. (1992). Scolopenders of Viet-Nam and some aspects of the system of Scolopendromorpha (Chilopoda, Epimorpha), part 1. Arthropoda Selecta 1, 5–19.

Schileyko, A. A. (2007). The scolopendromorph centipedes (Chilopoda) of Vietnam, contributions to the faunas of Cambodia and Laos. Part 3. Arthropoda Selecta 16, 71–95.

Schileyko, A., and Minelli, A. (1998). On the genus Newportia Gervais, 1847 (Chilopoda: Scolopendromorpha: Newportiidae). Arthropoda Selecta 7, 265–299.

Schileyko, A., and Stagl, V. (2004). The collection of scolopendromorph centipedes (Chilopoda) in the Natural History Museum in Vienna: a critical re-evaluation of former taxonomic identifications. Annalen des Naturhistorischen Museums in Wien 105, 67–137.

Sharma, P. P., Vahtera, V., Kawauchi, G. Y., and Giribet, G. (2011). Running WILD: the case for exploring mixed parameter sets in sensitivity analysis. Cladistics 27, 538–549.
Running WILD: the case for exploring mixed parameter sets in sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Shelley, R. M., and Mercurio, R. (2005). Ectonocryptoides quadrimeropus, a new centipede genus and species from Jalisco, Mexico; proposal of Ectonocryptopinae, analysis of subfamilial relationships, and a key to subfamilies and genera of the Scolopocryptopidae (Scolopendromorpha). Zootaxa 1094, 25–40.

Stamatakis, A., Hoover, P., and Rougemont, J. (2008a). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Stamatakis, A. P., Meier, H., and Ludwig, T. (2008b). RAxML: a parallel program for phylogenetic tree inference. Available at http://molevol.cmima.csic.es/castresana/Gblocks_server.html

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=cf42dd658058571a9f75068685dd5dbcCAS | 17654362PubMed |

Vahtera, V., Edgecombe, G. D., and Giribet, G. (2012a). Evolution of blindness in scolopendromorph centipedes (Chilopoda: Scolopendromorpha): insight from an expanded sampling of molecular data. Cladistics 28, 4–20.
Evolution of blindness in scolopendromorph centipedes (Chilopoda: Scolopendromorpha): insight from an expanded sampling of molecular data.Crossref | GoogleScholarGoogle Scholar |

Vahtera, V., Edgecombe, G. D., and Giribet, G. (2012b). Spiracle structure in scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and its contribution to phylogenetics. Zoomorphology 131, 225–248.
Spiracle structure in scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and its contribution to phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Varón, A., Sy Vinh, L., and Wheeler, W. C. (2010). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26, 72–85.
POY version 4: phylogenetic analysis using dynamic homologies.Crossref | GoogleScholarGoogle Scholar |

Verhoeff, E. W. (1937). Chilopoden aus Malacca, nach den Objecten des Raffles Museum in Singapore. Bulletin of the Raffles Museum, Singapore 13, 198–270.

Waldock, J., and Edgecombe, G. D. (2012). A new genus of scolopendrid centipede (Chilopoda: Scolopendromorpha: Scolopendrini) from the central Australian deserts. Zootaxa 3221, 22–36.

Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331.

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=a9245cf9f037d3c680ee93e07e809a2dCAS | 11975347PubMed |