Evolutionary phenomics and the emerging enlightenment of arthropod systematics
Andrew R. Deans A D , István Mikó A , Benjamin Wipfler B and Frank Friedrich CA Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
B Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Jena 07743, Germany.
C Biocenter Grindel and Zoological Museum Hamburg, Hamburg University, Hamburg 20146, Germany.
D Corresponding author. Email: adeans@psu.edu
Invertebrate Systematics 26(3) 323-330 https://doi.org/10.1071/IS12063
Submitted: 14 August 2012 Accepted: 6 September 2012 Published: 21 September 2012
Abstract
Published research on the diversity and evolutionary history of Arthropoda sets a high standard for data collection and the integration of novel methods. New phylogenetic estimation algorithms, divergence time approaches, collaborative tools and publishing standards, to name a few, were brought to the broader scientific audience in the context of arthropod systematics. The treatment of morphology in these studies, however, has largely escaped innovation. Lodes rich in characters too often go unexplored, phenotype concepts are published with inadequate documentation and the way observations are textualised leaves them inaccessible to a majority of biologists. We discuss these issues, using data from recent arthropod systematics publications, and offer several that stand to restore the broad utility of morphological data. Specifically, we focus on: (1) the potential of internal soft-part characters and how to integrate their observation into arthropod systematics projects through dissection and serial sectioning; (2) the importance of capturing observations in images, especially using relatively new approaches, like laser scanning confocal microscopy and three-dimensional reconstruction; and (3) the untapped potential of established knowledge representation methods, which may help make the descriptive components of arthropod systematics research more accessible to other domains.
References
Andersen, S. O. (2004). Regional differences in degree of resilin cross-linking in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology 34, 459–466.| Regional differences in degree of resilin cross-linking in the desert locust, Schistocerca gregaria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVWnsr0%3D&md5=1056c2365e6a7b2fadffcbb20c7a00e9CAS |
Beckmann, F., Herzen, J., Haibel, A., Müller, B., and Schreyer, A. (2008). High density resolution in synchrotron-radiation-based attenuation-contrast microtomography. Proceedings – Society of Photo-Optical Instrumentation Engineers 7078, 70781D.
| High density resolution in synchrotron-radiation-based attenuation-contrast microtomography.Crossref | GoogleScholarGoogle Scholar |
Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., and Sayers, E. W. (2012). GeneBank. Nucleic Acids Research 40, D48–D53.
| GeneBank.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hur3P&md5=230d09e8990e3e1e06e1d26c3efe1844CAS |
Beutel, R. G., Friedrich, F., and Whiting, M. F. (2009a). Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. Arthropod Structure & Development 37, 418–433.
| Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |
Beutel, R. G., Kristensen, N. P., and Pohl, H. (2009b). Resolving insect phylogeny: the significance of cephalic structures of the Nannomecoptera in understanding endopterygote relationships. Arthropod Structure & Development 38, 427–460.
| Resolving insect phylogeny: the significance of cephalic structures of the Nannomecoptera in understanding endopterygote relationships.Crossref | GoogleScholarGoogle Scholar |
Beutel, R. G., Friedrich, F., and Aspök, U. (2010). The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zoological Journal of the Linnean Society 158, 533–562.
| The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta).Crossref | GoogleScholarGoogle Scholar |
Budd, G. E., and Olsson, L. (2007). Editorial: a renaissance for evolutionary morphology. Acta Zoologica 88, 1.
| Editorial: a renaissance for evolutionary morphology.Crossref | GoogleScholarGoogle Scholar |
Buffington, M. L., and Gates, M. (2008). Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens. American Entomologist 54, 222–224.
Burrows, M., Borycz, J. A., Shaw, S. R., Elvin, C. M., and Meinertzhagen, I. A. (2011). Antibody labelling of resilin in energy stores for jumping in plant sucking insects. PLoS ONE 6, e28456.
| Antibody labelling of resilin in energy stores for jumping in plant sucking insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KhurvN&md5=8d1490cb6cb48159b3e10987d3ae16b2CAS |
Bybee, S. M., Bracken-Grissom, H. D., Hermansen, R. A., Clement, M. J., Crandall, K. A., and Felder, D. L. (2011). Directed next generation sequencing for phylogenetics: an example using Decapoda (Crustacea). Zoologischer Anzeiger – A Journal of Comparative Zoology 250, 497–506.
| Directed next generation sequencing for phylogenetics: an example using Decapoda (Crustacea).Crossref | GoogleScholarGoogle Scholar |
Camacho, M. D. (2011). Cephalic musculature in five genera of Symphyla (Myriapoda). Arthropod Structure & Development 40, 159–185.
| Cephalic musculature in five genera of Symphyla (Myriapoda).Crossref | GoogleScholarGoogle Scholar |
Deans, A. R., Yoder, M. J., and Balhoff, J. P. (2012). Time to change how we describe biodiversity. Trends in Ecology & Evolution 27, 78–84.
| Time to change how we describe biodiversity.Crossref | GoogleScholarGoogle Scholar |
Dunlop, J. A., Wirth, S., Penney, D., McNeil, A., Bradley, R. S., Withers, P. J., and Preziosi, R. F. (2012). A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters 8, 457–460.
| A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.Crossref | GoogleScholarGoogle Scholar |
Edgecombe, G. D., and Koch, M. (2008). Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area. Cladistics 24, 872–901.
| Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area.Crossref | GoogleScholarGoogle Scholar |
Friedemann, K., Wipfler, B., Bradler, S., and Beutel, R. (2012). On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta). Acta Zoologica 93, 184–199.
| On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta).Crossref | GoogleScholarGoogle Scholar |
Friedrich, F., and Beutel, R. G. (2008). Micro-computer tomography and a renaissance of insect morphology. Proceedings – Society of Photo-Optical Instrumentation Engineers 7078, 70781U.
| Micro-computer tomography and a renaissance of insect morphology.Crossref | GoogleScholarGoogle Scholar |
Friedrich, F., and Beutel, R. G. (2010). Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 26, 579–612.
| Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |
Galassi, D. M. P. (1997). The genus Pseudectinosoma Kunz, 1935: an update, and description of Pseudectinosoma kunzi sp. n. from Italy (Crustacea: Copepoda: Ectinosomatidae). Archiv fuer Hydrobiologie 139, 277–287.
Gaunt, W. A., and Gaunt, O. N. (1978). ‘Three-dimensional Reconstruction in Biology.’ (University Park Press: Baltimore, MD, USA.)
Haug, J. T., Haug, C., Kutschera, V., Mayer, G., Maas, A., Liebau, S., Castellani, C., Wolfram, U., Clarkson, E. N. K., and Waloszek, D. (2011). Autofluorescence imaging, an excellent tool for comparative morphology. Journal of Microscopy 244, 259–272.
| Autofluorescence imaging, an excellent tool for comparative morphology.Crossref | GoogleScholarGoogle Scholar |
Hörnschemeyer, T., Beutel, R. G., and Pasop, F. (2002). Head structures of Priacma serrata LeConte (Coleoptera, Archostemata) inferred from X-ray tomography. Journal of Morphology 252, 298–314.
| Head structures of Priacma serrata LeConte (Coleoptera, Archostemata) inferred from X-ray tomography.Crossref | GoogleScholarGoogle Scholar |
Huckstorf, K., and Wirkner, C. S. (2011). Comparative morphology of the hemolymph vascular system in krill (Euphausiacea; Crustacea). Arthropod Structure & Development 40, 39–53.
| Comparative morphology of the hemolymph vascular system in krill (Euphausiacea; Crustacea).Crossref | GoogleScholarGoogle Scholar |
Huijsmans, D. B., Lamers, W. H., Los, J. A., and Strackee, J. (1986). Toward computerized morphometric facilities: a review of 58 software packages for computer-aided 4D reconstruction, quantification and picture generation from parallel serial sections. The Anatomical Record 216, 449–470.
| Toward computerized morphometric facilities: a review of 58 software packages for computer-aided 4D reconstruction, quantification and picture generation from parallel serial sections.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2Fpsl2ksA%3D%3D&md5=1b8ef5cfca750e28eea7f1ebf2b30b84CAS |
IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1970). Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry 9, 4022–4027.
| Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents.Crossref | GoogleScholarGoogle Scholar |
Johnson, N. F. (2011). A collaborative, integrated and electronic future for taxonomy. Invertebrate Systematics 25, 471–475.
| A collaborative, integrated and electronic future for taxonomy.Crossref | GoogleScholarGoogle Scholar |
Kaufmann, A., and Mueller, K. (2006). Overview of volume rendering. In ‘The Visualization Handbook’. (Eds C. Hansen and C. R. Johnson.) pp. 127–174. (Academic Press: London, UK.)
Klaus, A. V., and Schawaroch, V. (2006). Novel methodology utilizing confocal laser scanning microscopy for systematic analysis in arthropods (Insecta). Integrative and Comparative Biology 46, 207–214.
| Novel methodology utilizing confocal laser scanning microscopy for systematic analysis in arthropods (Insecta).Crossref | GoogleScholarGoogle Scholar |
Klaus, A. V., Kulasekera, V. L., and Schawaroch, V. (2003). Three-dimensional visualization of insect morphology using confocal laser scanning microscopy. Journal of Microscopy 212, 107–121.
| Three-dimensional visualization of insect morphology using confocal laser scanning microscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srlsFCjsA%3D%3D&md5=057a01e2230e927e6f357f23f5ed554cCAS |
Koch, M., and Edgecombe, G. D. (2012). The preoral chamber in geophilomorph centipedes: comparative morphology, phylogeny, and the evolution of centipede feeding structures. Zoological Journal of the Linnean Society 165, 1–62.
| The preoral chamber in geophilomorph centipedes: comparative morphology, phylogeny, and the evolution of centipede feeding structures.Crossref | GoogleScholarGoogle Scholar |
Lak, M., Néraudeau, D., Nel, A., Cloetens, P., Perrichot, V., and Tafforeau, P. (2008). Phase contrast Xray synchrotron imaging: opening access to fossil inclusions in opaque amber. Microscopy and Microanalysis 14, 251–259.
| Phase contrast Xray synchrotron imaging: opening access to fossil inclusions in opaque amber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvF2rtL0%3D&md5=ae293671f8e616b725eb0d8da34dbb92CAS |
Lemmon, A. R., and Moriarty Lemmon, E. (2012). High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Systematic Biology , .
| High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography.Crossref | GoogleScholarGoogle Scholar |
Liljeblad, J., Ronquist, F., Nieves-Aldrey, J.-L., Fontal-Cazalla, F., Ros-Farre, P., Gaitros, D., and Pujade-Villar, J. (2008). A fully web-illustrated morphological phylogenetic study of relationships among oak gall wasps and their closest relatives (Hymenoptera: Cynipidae). Zootaxa 1796, 1–73.
Mabee, P. M., Ashburner, M., Cronk, Q., Gkoutos, G. V., Haendel, M., Segerdell, E., Mungall, C., and Westerfield, M. (2007). Phenotype ontologies: the bridge between genomics and evolution. Trends in Ecology & Evolution 22, 345–350.
| Phenotype ontologies: the bridge between genomics and evolution.Crossref | GoogleScholarGoogle Scholar |
Mabee, P. M., Balhoff, J. P., Dahdul, W. M., Lapp, H., Midford, P. E., Vision, T. J., and Westerfield, M. (2012). 500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton. Journal of Applied Ichthyology 28, 300–305.
| 500,000 fish phenotypes: The new informatics landscape for evolutionary and developmental biology of the vertebrate skeleton.Crossref | GoogleScholarGoogle Scholar |
Metscher, B. D. (2009). MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9, 11.
| MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues.Crossref | GoogleScholarGoogle Scholar |
Michels, J. (2007). Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. Journal of Microscopy 227, 1–7.
| Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svhvV2gsA%3D%3D&md5=911f5d33aae2059f5ab522b4af9d192bCAS |
Michels, J., and Gorb, S. N. (2012). Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. Journal of Microscopy 245, 1–16.
| Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Cgsrc%3D&md5=6b0ad7907f359448d1aae42781beb5abCAS |
Mikó, I., Vilhelmsen, L., Johnson, N. F., Masner, L., and Pénzes, Z. (2007). Morphology of Scelionidae (Hymenoptera: Platygastroidea): head and mesosoma. Zootaxa 1571, 1–78.
Mikó, I., Friedrich, F., Yoder, M. J., Hines, H. M., Deitz, L. L., Bertone, M. A., Seltmann, K. C., Wallace, M. S., and Deans, A. R. (2012). On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence. PLoS ONE 7, e30137.
| On dorsal prothoracic appendages in treehoppers (Hemiptera: Membracidae) and the nature of morphological evidence.Crossref | GoogleScholarGoogle Scholar |
Mullins, P. L., Kawada, R., Balhoff, J. P., and Deans, A. R. (2012). A revision of Evaniscus (Hymenoptera, Evaniidae) using ontology-based semantic phenotype annotation. ZooKeys , .
Mungall, C. J., Gkoutos, G. V., Smith, C. L., Haendel, M. A., Lewis, S. E., and Ashburner, M. (2010). Integrating phenotype ontologies across multiple species. Genome Biology 11, R2.
| Integrating phenotype ontologies across multiple species.Crossref | GoogleScholarGoogle Scholar |
Neff, D., Frazier, S. F., Quimby, L., Wang, R.-T., and Zill, S. (2000). Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence. Arthropod Structure & Development 29, 75–83.
| Identification of resilin in the leg of cockroach, Periplaneta americana: confirmation by a simple method using pH dependence of UV fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjltFGrsQ%3D%3D&md5=23144fef4e089569b9c23ba9188d94c3CAS |
Pohl, H., Wipfler, B., Grimaldi, D., Beckmann, F., and Beutel, R. G. (2010). Reconstructing the anatomy of the 42-million-year-old fossil †Mengeatertiaria (Insecta, Strepsiptera). Naturwissenschaften 97, 855–859.
| Reconstructing the anatomy of the 42-million-year-old fossil †Mengeatertiaria (Insecta, Strepsiptera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyhurjE&md5=19e20614b3d3a7006a64f07b661e8872CAS |
Popper, H., and Schaffner, F. (1959). The renaissance of morphology. Gastroenterology 37, 689–692.
| 1:STN:280:DyaF3c7os12itA%3D%3D&md5=7ce34ee4995d8c9acaebb3a78b29e1a2CAS |
Quicke, D. L. J., Lopez-Vaamonde, C., and Belshaw, R. (1999). Preservation of hymenopteran specimens for subsequent molecular and morphological study. Zoologica Scripta 28, 261–267.
| Preservation of hymenopteran specimens for subsequent molecular and morphological study.Crossref | GoogleScholarGoogle Scholar |
Romani, R., Isidoro, N., and Bin, F. (2010). Antennal structures used in communication by egg parasitoids. Progress in Biological Control 9, 57–96.
| Antennal structures used in communication by egg parasitoids.Crossref | GoogleScholarGoogle Scholar |
Ruthensteiner, B. (2008). Soft part 3D visualization by serial sectioning and computer reconstruction. Zoosymposia 1, 63–100.
Ruthensteiner, B., and Heß, M. (2008). Embedding 3D models of biological specimens in PDF publications. Microscopy Research and Technique 71, 778–786.
| Embedding 3D models of biological specimens in PDF publications.Crossref | GoogleScholarGoogle Scholar |
Ruthensteiner, B., Baeumler, N., and Barnes, D. G. (2010). Interactive 3D volume rendering in biomedical publications. Micron (Oxford, England) 41, 886–898.
| Interactive 3D volume rendering in biomedical publications.Crossref | GoogleScholarGoogle Scholar |
Seltmann, K. C., Yoder, M. J., Mikó, I., Forshage, M., Bertone, M. A., Agosti, D., Austin, A. D., Balhoff, J. P., Borowiec, M. L., Brady, S. G., Broad, G. R., Brothers, D. J., Burks, R. A., Buffington, M. L., Campbel, H. M., Dew, K. J., Ernst, A. F., Fernández-Triana, J. L., Gates, M. W., Gibson, G. A. P., Jennings, J. T., Johnson, N. F., Karlsson, D., Kawada, R., Krogmann, L., Kula, R. R., Mullins, P. L., Ohl, M., Rasmussen, C., Ronquist, F., Schulmeister, S., Sharkey, M. J., Talamas, E., Tucker, E., Vilhelmsen, L., Ward, P. S., Wharton, R. A., and Deans, A. R. (2012). A hymenopterists’ guide to the Hymenoptera Anatomy Ontology: utility, clarification, and future directions. Journal of Hymenoptera Research 27, 67–88.
| A hymenopterists’ guide to the Hymenoptera Anatomy Ontology: utility, clarification, and future directions.Crossref | GoogleScholarGoogle Scholar |
Smith, B. (2005). The logic of biological classification and the foundations of biomedical ontology. In ‘Invited Papers from the 10th International Conference in Logic Methodology and Philosophy of Science (Oviedo, Spain, 2003)’. (Ed. D. Westerståhl.) pp. 505–520. (King’s College Publications: London, UK).
Stüben, M., and Linsenmair, E. (2008). Advances in insect preparation: bleaching, clearing and relaxing ants (Hymenoptera: Formicidae). Myrmecological news 12, 15–21.
Stuessy, T. F., Mayer, V., and Hörandl, E. (2003). Deep morphology: toward a renaissance of morphology in plant systematics. Regnum Vegetabile 141, 1–326.
Szucsich, N. U., Pennerstorfer, M., and Wirkner, C. S. (2011). The mouthparts of Scutigerella immaculata: Correspondences and variation among serially homologous head appendages. Arthropod Structure & Development 40, 105–121.
| The mouthparts of Scutigerella immaculata: Correspondences and variation among serially homologous head appendages.Crossref | GoogleScholarGoogle Scholar |
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J. J., Kay, R. F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics. A, Materials Science & Processing 83, 195–202.
| Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOgtLs%3D&md5=7fbc7e2765639717a5934684a9b0c4feCAS |
Talamas, E., Masner, L., and Johnson, N. F. (2011). Revision of the Paridris nephta species group (Hymenoptera, Platygastroidea, Platygastridae). Zookeys 133, 49–94.
| Revision of the Paridris nephta species group (Hymenoptera, Platygastroidea, Platygastridae).Crossref | GoogleScholarGoogle Scholar |
Talarico, G., Lipke, E., and Alberti, G. (2011). Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. Journal of Morphology 272, 89–117.
| Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |
Verbeek, F. J., Huijsmans, D. B., Baeten, R. J. A. M., Schoutsen, N. J. C., and Lamers, W. H. (1995). Design and implementation of a database and program for 3D reconstruction from serial sections: a data-driven approach. Microscopy Research and Technique 30, 496–512.
| Design and implementation of a database and program for 3D reconstruction from serial sections: a data-driven approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2Mzit1Knsw%3D%3D&md5=2f15de7872f34410a7c1c29400bbdb52CAS |
Vilhelmsen, L., Mikó, I., and Krogmann, L. (2010). Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). Zoological Journal of the Linnean Society 159, 22–194.
| Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera).Crossref | GoogleScholarGoogle Scholar |
Vogt, L., Bartolomaeus, T., and Giribet, G. (2010). The linguistic problem of morphology: Structure versus homology and the standardization of morphological data. Cladistics 26, 301–325.
| The linguistic problem of morphology: Structure versus homology and the standardization of morphological data.Crossref | GoogleScholarGoogle Scholar |
Washington, N., and Lewis, S. (2008). Ontologies: scientific data sharing made easy. Nature Education 1, .
Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A., and Stevenson, A. W. (1996). Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335–338.
| Phase-contrast imaging using polychromatic hard X-rays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1ajtLg%3D&md5=ef199b87d292341881bfbd72b90f79bcCAS |
Winslow, J. L., Bjerknes, M., and Cheng, H. (1987). Three-dimensional reconstruction of biological objects using a graphics engine. Computers and Biomedical Research, an International Journal 20, 583–602.
| Three-dimensional reconstruction of biological objects using a graphics engine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FotFGhtA%3D%3D&md5=453207991d4f0f9161a32993e4ab6cc3CAS |
Wipfler, B., Machida, R., Müller, B., and Beutel, R. G. (2011). On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia. Systematic Entomology 36, 241–266.
| On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia.Crossref | GoogleScholarGoogle Scholar |
Wirkner, C. S., and Richter, S. (2007). The circulatory system in Mysidacea—implications for the phylogenetic position of Lophogastrida and Mysida (Malacostraca, Crustacea). Journal of Morphology 268, 311–328.
| The circulatory system in Mysidacea—implications for the phylogenetic position of Lophogastrida and Mysida (Malacostraca, Crustacea).Crossref | GoogleScholarGoogle Scholar |
Wogelius, R. A., Manning, P. L., Barden, H. E., Edwards, N. P., Webb, S. M., Sellers, W. I., Taylor, K. G., Larson, P. L., Dodson, P., You, H., Da-qing, L., and Bergmann, U. (2011). Trace Metals as Biomarkers for Eumelanin Pigment in the Fossil Record. Science 333, 1622–1626.
| Trace Metals as Biomarkers for Eumelanin Pigment in the Fossil Record.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGitb%2FJ&md5=2f591c1cf483edc50069c016b4c64a54CAS |
Yoder, M. J., Mikó, I., Seltmann, K. C., Bertone, M. A., and Deans, A. R. (2010). A gross anatomy ontology for Hymenoptera. PLoS ONE 5, e15991.
| A gross anatomy ontology for Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVaqsg%3D%3D&md5=14a90bea6957c05a2395a3c0a9c32d58CAS |